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ABSTRACT

Multi-Input Multi-Output (MIMO) wireless communication
systems provide large capacity allowing high data rates trans-
mission. However, this huge increase of the capacity re-
quires perfect channel knowledge at the receiver. In this pa-
per, we analyze the effect of imperfect channel knowledge
on the achievable rates. More precisely, we express a lower
bound on the capacity as a function of the channel Cramer-
Rao bound (CRB). In previous works, we made the calcula-
tion and comparison of CRB for different channel estimation
schemes [1] and [2]. This allows us to make comparison of
channel achievable rates for different context under various
data and pilot design assumptions.

1. INTRODUCTION

MIMO channel capacity was widely investigated under dif-
ferent assumptions on channel state information (CSI) which
corresponds to the channel response estimate. First results
on MIMO channels capacity with perfect CSI at the receiver
(CSIR) or both at the transmitter (CSIT) and the receiver
was provided by Telatar [3]. In [4], Medard derived bounds
on mutual information with imperfect CSIR and no CSIT
for time-varying communication in a SISO channel model.
Caire and Shamai, in [5], studied some channels with im-
perfect CSIT and perfect CSIR. The CSI can be driven by
blind, semi-blind or training sequence based techniques. The
effects of training sequence based estimation of MIMO chan-
nels on achievable data rates was already analyzed in [6], [7].

Semi-blind techniques were proposed to overcome waste
of channel throughput by training symbols and to improve
channel estimation. Channel estimation performance of
semi-blind methods was investigated in [8] and [1] by con-
sidering (CRB) for different pilot symbol design.

In this paper, we would like to compare semi-blind
and training sequence based estimation methods regarding
achievable rates. We investigate the following questions:
• Relation of channel achievable rate to the channel CRB.
• Comparison of semi-blind and training sequence based

channel estimation errors effect on channel achievable
rate.

2. CHANNEL MODEL

We consider a MIMO system equipped with K transmit and
M receive antennae. The MIMO channel is assumed to fol-
low the Rayleigh block fading model. This means that the
channel matrix has i.i.d coefficients with Rayleigh distrib-
ution that are constant for T transmitted consecutive sym-
bols and changing independently to a new realization in the

next interval. The complex baseband representation of the
received signal is given by

Y = HS+N (1)

where S ∈ lCK×T is the matrix of the transmitted signal block
during T time samples, i.e during a channel realization,
Y ∈ lCM×T is the observed matrix during T time samples and
H ∈ lCM×K is the channel gain matrix.
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The channel is Rayleigh i.e, the channel gains from the kth

transmit antenna to the mth receive antenna, hmk with m =
1, . . . ,M and k = 1, . . . ,K are assumed to be i.i.d complex
Gaussian variables. N is the noise matrix which is assumed
to be with i.i.d circular complex Gaussian zero mean entries
with variance s 2

n . At each time instant, the received vector is

y(t) = Hs(t)+n(t)

In the following, the time index t will be omitted.

y = Hs+n = S̄h+n (2)

with S̄ = sT ⊗ I where ⊗ is the Kronecker symbol s =
[s1 . . .sK ]T and h = vec(H) = [hT

1 . . .hT
K ]T the vector in

which the columns hk with k = 1 . . .K of H are stacked.

2.1 Pilot Design

Semi-blind and training sequence estimation techniques re-
quire the insertion of known symbols. In training sequence
estimation, known symbols are placed at the beginning of
the frame and are used for the channel estimation. In semi-
blind estimation, known symbols can be time-multiplexed
with data symbols (see Fig.1) or embedded (see Fig.2) to
them. The transmitted power is divided between data and
pilot symbols. Let us consider the model in (2), where the
kth transmitted symbol sk is decomposed into data and pilot
parts:

sk = sd,k + sp,k (3)

Here sd,k are either zero or i.i.d data symbols with zero mean
and variance s 2

d and sp,k are pilot symbols with allocated



power s 2
p . This model applies to both time-multiplexed

pilot scheme and embedded pilot scheme. For the time-
multiplexed-pilot scheme, sp,k = 0 (resp. sd,k = 0) when a
data (resp. pilot) symbol is transmitted. Whatever the pilot
design, the channel input/output relationship described by (2)
can be rewritten as follows (using similar notation as above):

y = H(sd + sp)+n = (S̄d + S̄p)h+n

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

    Pilot Data Data Pilot

Figure 1: Time-multiplexed pilot scheme
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Figure 2: Embedded pilot scheme

3. CHANNEL ESTIMATION

In this paper, we do not consider a specific channel estima-
tion error due to particular estimation method (ML, MMSE).
In presence of estimation error one can write, H = Ĥ+ H̃,
where Ĥ is the channel estimate and H̃ is the channel esti-
mation error. Therefore, equation (2) becomes:

y = Ĥs+v with v = H̃s+n

We make the following assumptions on the channel estimate
and the channel estimation error.
• (A1) The coefficients of the channel estimate matrix ĥi j

are complex Gaussian i.i.d. It follows that coefficients of
the channel estimation error matrix h̃i j are also complex
Gaussian.

• (A2) The channel estimation error is zero mean, i.e we
consider only unbiased estimators (or asymptotically un-
biased estimators).

• (A3) Channel estimation error H̃ is uncorrelated with the
data vector s.

The later assumption, is an asymptotic (i.e for large sample
size T ) approximation as shown in [9]. Afterward, we will
study the effective noise v statistics. Assumptions (A2) and
(A3) implies that v is zero mean. Its covariance matrix Rv

is given by Rv = E[H̃ssHH̃H ]+ s 2
n I with

Rv(i, j) = E[viv
⋆
j ] =

K

å
k=1

K
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E[h̃iksks⋆
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⋆
jk′ ]+E[nin

⋆
j ]

The channel estimation error H̃ and data symbols are uncor-
related.

E[h̃iksks⋆
k′ h̃

⋆
jk′ ] = E[sks⋆

k′ ]E[h̃ikh̃⋆
jk′ ]

The data symbols being i.i.d, it follows that:

E[sks⋆
k ] =

{

s 2
d + s 2

p for embedded pilot scheme
s 2

d for time-multiplexed scheme

Let us denote s 2
s = E[sks⋆

k ]

Rv(i, j) =


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s 2
s å K

k=1 E[h̃ikh̃⋆
jk] i 6= j

s 2
s å K

k=1 E[|̃hik|
2]+ s 2

n j = i

Then, the expression of the covariance matrix of the effective
noise, whatever the considered estimation technique, is

Rv = s 2
s E[H̃H̃H ]+ s 2

n I (4)

4. CHANNEL CRAMER-RAO BOUND

In this section, we seek to relate the effective noise covari-
ance matrix to the CRB. The CRB is defined as a lower bound
on the mean square error of an unbiased estimator q̂ of a pa-
rameter q .

E[(q̂ − q )(q̂ − q )H ] ≥CRB

We take q = h. CRBk denotes the CRB on the complex
parameter vector hk. Consequently,

E[h̃kh̃
H
k ] ≥ CRBk ∀ k = 1 . . .K

K

å
k=1

E[h̃kh̃
H
k ] ≥

K

å
k=1

CRBk

We notice that E[H̃H̃H ] = å K
k=1 E[h̃kh̃

H
k ]. Then, we deduce

the underneath lower bound on the effective noise covariance
matrix:

Rv ≥ s 2
s

K

å
k=1

CRBk + s 2
n I (5)

5. MUTUAL INFORMATION LOWER BOUND
LINK TO CHANNEL CRB

5.1 Mutual information lower bound

Mutual information (MI) lower bound for imprecise CSIR
was already derived for SISO channel in [4] and for MMSE
MIMO channel estimator based on training sequence in [7]
and [6]. In this section, we derive MI lower bound for impre-
cise CSIR independently of the MIMO channel estimation
technique under the assumptions listed in the previous sec-
tion. We, therefore, relate it to the channel CRB. To make
this paper fully independent, we include most of calculation
steps. The ergodic capacity of the fading channel with an
estimated channel Ĥ at the receiver is given by:

C = max
p(sd)

EĤ

[

I(sd ;y|Ĥ)
]

(6)

where I(.; .) denotes the MI. We begin by expanding the con-
ditional MI:

I(sd ;y|Ĥ) = c (sd |Ĥ)− c (sd |y,Ĥ)

where c represents the entropy function. The first term can
be upper bounded as in [4].

c (sd |y,Ĥ) ≤ log|p eΣsd−Ay| (7)

Σsd−Ay is the covariance matrix of sd −Ay where A is a
K ×M matrix picked such that Σsd−Ay is minimized. This
is the case when Ay is the MMSE estimate of sd , in which
case

Σsd−Ay = Rsdsd −RsdyR
−1
yyRysd



where Rsdsd is the covariance matrix of the data signal vec-
tor sd . We assume that the channel estimation error, the
Gaussian noise and the transmitted signal sd are all uncor-
related and of zero mean. This assumption leads to the fol-
lowing expression of Rsdy, Ryy and consequently Σsd−Ay

Rsdy = RsdsdĤ
H , Ryy = ĤRsdsdĤ

H +Rv

Σsd−Ay = (I−RsdsĤ
H(ĤRsdsdĤ

H +Rv)−1Ĥ)Rsdsd

= (I+RsdsdĤ
HR−1

v Ĥ)−1Rsdsd

Then, inequality (7) becomes:

c (sd |y,Ĥ) ≤ log|p e(I+RsdsdĤ
HR−1

v Ĥ)−1Rsdsd |

Consequently, a lower bound on the MI for a channel
estimator Ĥ is given by:

I(sd ;y|Ĥ) ≥ c (sd |Ĥ)− log|p e(I+Rsdsd Ĥ
HR−1

v Ĥ)−1Rsdsd |

The Gaussian distribution is the MI maximizing distribution
in AWGN Rayleigh flat fading channel with perfect channel
knowledge at both receive and transmit sides or only perfect
knowledge at the receiver and absence of channel knowledge
at the transmitter, see [3]. Under this assumption on the data
distribution, c (sd |Ĥ) = log|p eRsdsd |. Then, we consider
Gaussian distribution to simplify the lower bound calcula-
tion.

I(sd ;y|Ĥ) ≥ log|I+Rsdsd Ĥ
HR−1

v Ĥ| (8)

The bound found in [6] is a particular case of (8) because
it corresponds to the training sequence based MMSE chan-
nel estimation. However, this bound is true for all channel
unbiased estimation techniques. The difference between two
channel estimators resides into the expression of Rv that in-
cludes the channel estimation error covariance matrix. The
log|.| function is an increasing function on the cone of pos-
itive definite Hermitian matrices. Therefore, a tight lower
bound on the MI is:

I(sd ;y|Ĥ) ≥ log|I+Rsdsd Ĥ
H(s 2

s

K

å
k=1

CRBk + s 2
n I)−1Ĥ|

5.2 Ergodic capacity lower bound

The bound on the mutual MI induces a lower bound on the
ergodic capacity of the channel. In the time-multiplexed
scheme, we assume that within a frame of length T , Tt sym-
bols are pilot. Consequently,

C≥ E
Ĥ

T −Tt
T

log|I+Rsdsd Ĥ
H(s 2

s

K

å
k=1

CRBk + s 2
n I)−1Ĥ| (9)

Otherwise, if pilot symbols are embedded with data symbols
the lower bound on the ergodic capacity is

C≥ E
Ĥ

log|I+Rsdsd Ĥ
H(s 2

d

K

å
k=1

CRBk + s 2
n I)−1Ĥ| (10)

Note that the CRB in (9) is different from that in (10) since
the pilot design is not the same.

5.3 Semi-blind CRB and training sequence CRB

In this subsection, we will recall the CRBs expressions of
the semi-blind and training sequence based estimation tech-
niques. As the data symbols are Gaussian we consider the
channel estimation error is the Gaussian CRB derived in [2]
for MIMO channels. We remind that CRB = J−1

hh where Jhh

is the Fisher information matrix (FIM).
• FIM of semi-blind estimation

Jhh(i, j) = (S̄H
p R−1

yyS̄p)(i, j)

+ trace

{

R−1
yy

(

¶ Ryy

¶ hi
⋆

)

R−1
yy

(

¶ Ryy

¶ h j
⋆

)H
}

(11)
with Ryy = HRsdsdH

H + s 2
n I.

• Gaussian CRB of training sequence estimation

Jhh =
1

s 2
n
S̄H

p S̄p then CRB = s 2
n (S̄H

p S̄p)
−1

6. ERGODIC CAPACITY IN CORRELATED
FADING CHANNEL

In this section, we make use of results on ergodic capacity of
correlated Rayleigh flat fading channels to have an explicit
analytic expression of the bounds in (9) and (10). The cor-
related MIMO channel can be described by the matrix prod-
uct H = Ar

HHw where Hw is a M ×K matrix of complex
i.i.d Gaussian entries of unit variance and ArAr

H = Rrx

where Rrx is the receive correlation matrix. The ergodic ca-
pacity of a Rayleigh flat fading correlated MIMO channel in
Gaussian noise (when time-multiplexed pilot scheme is used)
was derived in [10].

C = EĤ

T −Tt
T

log|I+RsdsdHHR−1
nnH| (12)

Rnn is the Gaussian noise covariance matrix. Let W =
eig(R−1

nnRrx) = diag(w 1, . . . , w R) and S = eig(Rsdsd ) where
eig(A) represents the diagonal matrix of the eigenvalues of A.

C = EHw

T −Tt
T

log|I+ΣHH
wΩHw| (13)

The explicit expression of (13) is given by a theorem in [10].

Theorem 1 The ergodic capacity of a receive correlated
MIMO system with K input and M output antennae (M ≥ K)

C =
(−1)

M(M−1)
2 (−1)−(M−K)K |W |M−K−1

ln2 a M(W ) G K(K)

K

å
l=1

∣

∣

ΞM(l)
ΨM

∣

∣

where ΞM(l) with l = 1, . . .K are K ×M matrices

ΞM(l)(i, j) =

[

Λ1(
1

w j
,1, i) i = l

G (i)w i
j i 6= l

]

and the (M−K)×M matrix ΨM are given by

ΨM(i, j) = (
1

w j
)M−K−i

Λ1(
1

w j
,1, i) = G (i)e(1/w j).

i−1

å
k=1

G (−i+ k, w j)w j
k



G (−i,
1

w j
) =

(−1)i

i!



El(
1

w j
)− e

− 1
w j

i−1

å
j=0

(−1) j j!
1

w j

j+1


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with El(
1

w j
) =

∫ +¥
1

w j

e−t

t dt, a M(Ω) = Õ i< j(w i − w j) and

G K(K) = Õ K
i=1 G (M− i+1), G (x) standard Gamma function.

The explicit expressions of (9) and (10) come directly
from this theorem by replacing R−1

nnRrx by Rv
−1. Then

W = eig(Rv
−1). The case of K ≥ M can be reduced to an

equivalent problem by switching Σ and Ω.

C = EHw

T −Tt
T

log|I+ΩHwΣHH
w |

7. EXPERIMENTAL RESULTS

In Fig. 3, we compare the trace of the Gaussian CRBs for dif-
ferent channel estimation techniques. We consider training
sequence estimation and semi-blind estimation with the two
possible pilot designs time-multiplexed and embedded pilot.
We consider MIMO systems with K = 2,6 and M = 2. For
the time-multiplexed scheme, we consider packets of length
T = 100 in which Tt symbols are allocated to pilots, with
equal data and pilot power s 2

d = s 2
p = 1. However, for the

embedded pilot scheme, the same packet length is consid-
ered but in this case 100 data symbols are transmitted in ad-
dition with 100 pilot symbols. We consider a power alloca-
tion scheme where the power allocated to T superimposed
(data+pilot) symbols is the same as that allocated to time-
multiplexed T −Tt data and Tt pilot symbols. Therefore, in
the embedded pilot case, the number of pilot symbols is un-
changed (T = 100) but their power changes according to the
previous rule. In Fig.4, we compare the achievable rates for
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Figure 3: CRBs with semi-blind and training sequence estimation

these different estimation techniques and pilot designs. We
noticed that:
• The semi-blind technique with time-multiplexed pilot

symbols outperforms the training sequence based one
particularly when a few number of pilot symbols is used.

• The semi-blind technique with embedded pilot outper-
forms the two former techniques at a given threshold on
the number of pilot symbols. Even if the embedded pilot
scheme allows higher achievable rates this doesn’t mean
that the embedded pilot scheme would be preferred to the
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time-multiplexed one since we should not only compare
the achievable rates but also the BER (or FER).
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