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ABSTRACT

In this paper, general results for ideal UWB (Ultrawideband) im-
pulse beampattern are given. It can be easily shown that the main-
lobe width is similar to the narrowband case. In contrast, the ab-
sence of grating lobes and the appearance of a fixed sidelobe level
dependent only on the number of antennas and not on their spac-
ing is a beneficial property. A further unusual fact is that unequal
prefiltering or weighting of the array antennas leads to an increase
of the sidelobe level. Numerical simulations validate these unfamil-
iar results. In conclusion, the design of UWB arrays needs special
attention.

1. INTRODUCTION

Beamforming for UWB impulse signals shows some special fea-
tures, and some of them are different from the narrowband case.
Also, there are several possible definitions of the beampattern; we
will present 3 cases and investigate one of them in more detail. First,
a coarse estimate of the mainlobe width shows that this parameter
is similar to the usual narrowband case. Second, the investigation
of ideal time-delay beamforming for short pulses exhibit a striking
feature, namely the absence of grating lobes in the beampattern.
This means that the spacing of the array elements is not limited by
half of the wavelength, hence high resolution can be achieved with
only a few array elements. A further surprising property is that the
use of unequal prefilters or weighting for the individual antennas
is detrimental for the sidelobe level, which is in clear contrast to
the narrowband case. Although these results are valid in a rather
general broadband setting, we will give simulation results for the
special case of UWB impulse beamforming.

2. IDEAL BEAMFORMING FOR UWB PULSES

To start with, we consider the case of a linear equispaced array, con-
sisting of N equidistant omnidirectional antennas. If ¢ is the prop-
agation speed, the angle of incidence of a time-limited impulse
signal s(¢) measured with respect to broad-side direction and d the
distance between two sensors, then the signal recorded at the n-th
sensor is given by

d
yn(t)=s(t+n—sin( ))=st+n ), n=0(1)N-1,
where = (d/c)sin( ). The ideal “delay and sum” or time-delay
beamformer produces

1 N—-1

y( s 7t): A hnyn(tfn )7
n p=0

where = (d/c)sin( ) are the steering delays, the steering an-
gle and A, the weighting coefficients. In order to achieve a time-
independent beampattern the total energy

Bere( )= ([ . ope)” )
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of the beamformer output has been proposed, as well as
BPyax( ) =maxly( , 1), 2

see [3, 1, 6, 7] and the literature cited there. The formal advantage
of (1) is to allow some meaningful analytical calculations; however,
even for selected short broadband pulses, an exact closed form ex-
pression of (1) or (2) is not known so far. Also, the infinite integra-
tion time is unrealistic. For some special UWB pulses, approximate
formulas for the beampattern have been developed [2].

In this paper, we propose an alternate definition of a time-
invariant beampattern

J=max([Cora)? 6

BP( , (],

where the integration time 7 is matched to the duration of the UWB
pulse. This is no drawback, since in all cases considered, the beam-
pattern is dependent on the pulse shape. Also, this beampattern can
be related to the impulse energy, which is a meaningful physical pa-
rameter. The beampattern given by this definition is not as conve-
nient analytically tractable as (1), see [7] for details, but interesting
general results can still be derived. It should be mentioned that all
three beampattern definitions reduce to the usual narrowband beam-
pattern in the case of narrowband signals.

3. MAJOR PROPERTIES OF THE BEAMPATTERN
3.1 Estimate of mainlobe width

In this section, we will give a coarse general but nevertheless quite
precise estimate of the mainlobe width of the beampattern accord-
ing to the definition (3). Let us assume that the impulse s(¢) is
of finite duration 7, the weighting coefficients are equal and the
number of the array antennas is large. For simplicity an impulse
coming from broadside is considered in the following. Based on
these assumptions, known also from the narrowband case, the cor-
responding -3dB mainlobe angle 3,5 can be related to the arrays
dimension and the impulse duration by [5]

2V2Te

L )
where L denotes the physical length of the array. This equation is
“worst case” and can also be reformulated according to the clas-
sical narrowband setting. Note that for ”simple” baseband pulses,
bandwidth and duration are related by B ~ 1/T. If the bandwidth
is taken to be 2 times some virtual center frequency f. related to
wavelength . =c¢/ . we obtain, since the mainlobe is symmetric,
the -3dB mainlobe width in the angular variable u = sin( ) as

sin( _34p) ~

Nu_3yp =~ \/ETC

This result is very similar to the narrowband case [8]; for concrete
impulse shapes, the mainlobe width will certainly be smaller. This
can be observed in the simulation results in section 4.



3.2 The sidelobe level for UWB impulse beamforming

We will first consider the grating lobes, which are well known in the
narrowband case. It has already been mentioned in [2, 3, 6, 7], that
there is an averaging effect for the UWB beampattern that mitigates
grating lobes.

In the following the general case with a linear time-invariant
prefilter 4, (¢) in each antenna branch yields

N-1
(sxhy)(t+n —n ),
n=0

where * denotes convolution as usual [4]. Of course, the integration
time T for the beampattern according to (3) has to be adapted to the
maximum duration of the filtered pulse.

Note that in this way, a beamformer using matched filtering
in each channel is included in our investigation by setting 4, (¢) =
s(—t)* for all n.

The following results can be stated [5]:

e Ifthe duration of the pulse s(¢) and the filters 4, (¢) is limited by
T and Ty, respectively, then for angles with

L+Th< — . “)
the sidelobe level (SSL) for BP2( , ) is given by

t+T/2N-1

SLLzzzﬂ?X(/' (s ) (£ 4 n( DIdr). (5)

. t—T/2 n=0
e Further, the sidelobe level is bounded, and it holds

t+T/2

SLL? < max2( / (s hy) (1) Pde = max2Eyy, . (6)
n -T2 n

For some special cases of practical importance, even more concrete

information on the sidelobe level can be obtained:

e Ifthe duration of the pulse s(¢) and the filters 4, (¢) is limited by
T; and Ty, then the following applies:
1. If
AL+T) < — . 7

the fixed sidelobe level for BP?( , ) is given by

) t+T/2 )
SL? = max/ (s I ()2t

n Jt-T/2

max/ |(s%hy)(£))?dt = maxEg,, . (8)
n — n

2. If all the prefilters 4, are equal and if

I+ Th < ) (9)

the sidelobe level for BP?( , ) is given by
SLLZ:/ |(s%hy)()]2dt = Egup, - (10)

3. If instead of the prefilters simple weighting coefficients 4,
are used, i. e. h,(t) = (¢)h, and if

< -, ()

then the sidelobe level is given by

SLLZ:maxh,,(/ (5)(1)[2dt = Eymaxhy.  (12)

e Thus in all cases, if the duration of the prefiltered pulses or
pulses is short enough, and if steering angle and angle of in-
cidence are sufficiently separated, a fixed sidelobe level is ac-
complished and its value is given by (5), (8), (10) or (12), re-
spectively. The worst case is given by (5); but even then, the
sidelobe level is at the maximum twice the fixed sidelobe level
if i+ 7, < , as can be seen observed from (6).

As an example, in the case of equal prefilters and an angle of inci-
dence 0f 907, the fixed sidelobe level is reached at the steering angle
of =90 if

2d

If the pulse and/ or the filters have a shorter duration, the fixed level
is achieved already at a smaller steering angle which can be com-
puted from (11).

This means that for UWB impulse beamforming, there are vir-
tually no grating lobes. In consequence, the spacing of the array
elements is not limited by half of the wavelength, hence high reso-
lution can be achieved with only a few array elements but sufficient
spacing.

3.3 Ratio of mainlobe level to fixed sidelobe level

Without doubt this ratio is of interest for array design, because it
is one of the key factors for the array’s performance. We make
the usual assumption that the maximum value of the beampattern
shall occur for =, i.eifthe steering delays are matched to the
impinging signal delays.

The maximum value of the beampattern can in this case be ex-
pressed as

t+7/2 N—1
BP?( | ):max/ | (swh)(0)Pdr.
t -t*T/Z n=0

Since (s hy)(¢) is duration-limited and the integration time 7 is
equal to the maximum duration, the integration can be extended to
— to ,resulting in

N—1

[ 1 0P

n=0

BPZ( s )=

[N GG

where the second equation easily follows by Parsevals equation and
the convolution theorem for Fourier transforms.

The main results of this paper are the following:
e The maximum ratio of mainlobe to fixed sidelobe level

BP?( , )
SLL? (13)
is N, and it is realized if and only if all the prefilters 4, (¢) are
equal.
e Hence, for impulse beamforming an unequal prefiltering of the
array elements is not only useless, but detrimental since it de-
creases the ratio of mainlobe to sidelobe level

Hence, impulse beamforming has a second feature that is oppo-
site to the narrowband case, where unequal weighting or prefiltering
is generally used to improve the ratio of mainlobe to sidelobe level
or for interference cancellation. This result of course applies also
to the special case of prefilters with single coefficients on behalf of
filters.The proof for this case is given in appendix (2).

Since all prefilters are best chosen to be equal, they can be
merged together after the adder, so that only one filter remains.
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Figure 1: Beampattern of g(¢z) (solid line) and impulse g (¢)
(dashed line) arriving at 90° on array 1, with 2 elements at distance
and of narrowband signal with wavelength  (dash-dotted)

4. SIMULATION RESULTS

In order to give examples for typical UWB signals, we will evaluate
representative beampatterns by numerical simulations. Most often
found in the literature is the twice differentiated Gaussian impulse
gt)=(1-16 (i/ATP) e WATY, (14)
where the nominal duration AT is set to 2% 1010, leading to a

-3 dB bandwidth from 5GHz to 11.5 GHz, and an alternate UWB
waveform [2]

LR S NS

g ()= (15)

where the nominal duration AT is set to 2.5% 10719 s and the scal-
ing parameter to 1.5, leading to a -3 dB bandwidth from 3.4 GHz
to 8 GHz. The wavelength of the corresponding sinewave is chosen
according to a nominal center frequency of 6.85 GHz. Two typical
array configurations with different number of antennas are consid-
ered throughout this section:

e Array 1, has 2 elements at distance

e Array 2, has 2 elements at distance 2

e Array 14 has 4 elements at distance

e Array 24 has 4 elements at distance 2

Note that in the narrowband case, grating lobes will appear

in the beampattern for all scenarios. In figures 1-7, BP( , ) is
shown for signals arriving at 90°, and the beampattern correspond-
ing to g(¢), g (¢) whereas in figures 1-4 a sinewave of frequency
6.85 GHz is plotted in the same figure for comparison. It is observed
that the mainlobe width for impulse beamforming is approximately
the same as for the sinewave with corresponding virtual center fre-
quency. Figures 1 to 7 show the striking feature of impulse beam-
forming namely the mitigation of grating lobes and the appearance
of a fixed sidelobe level. In figures 5 and 6, a Hamming weight-
ing, which is traditionally used in the narrowband case for sidelobe
reduction, is applied to the arrays, and in figure 7, the result of ap-
plying a bandstop filter with stopband from 6 to 7 GHz in the first
and last beamformer channel and a a bandpass filter with frequency
band from 6 to 7 GHz in the other channels is shown. The result pre-
dicted by section 3 can be clearly observed, and the fixed sidelobe
level for the unequally weighted / prefiltered array is remarkably
higher than for the unweighted / filtered case.

5. CONCLUSION

Interesting results for ideal UWB beampattern have been presented,
as the absence of grating lobes and the appearance of a fixed side-
lobe level together with the unusual fact that unequal prefiltering or
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Figure 2: Beampattern of g(¢) (solid line) and impulse g (¢)
(dashed line) arriving at 90° on array 2, with 2 elements at distance
2 and of narrowband signal with wavelength  (dash-dotted)
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Figure 3: Beampattern of g(¢) (solid line) and impulse g (7)
(dashed line) arriving at 90° on array 14 with 4 elements at distance
and of narrowband signal with wavelength  (dash-dotted)

weighting of the array antennas leads to an increase of the sidelobe
level. The simulations underline the validity of these unfamiliar
results. This means that UWB impulse beamforming is clearly dif-
ferent from narrowband beamforming.

6. APPENDIX
6.1 Appendix 1: Mathematical notations
In the following, a real- or complex- valued signal s(¢) defined on
the real line R will be called of finite duration with duration T, if

it vanishes outside the interval [—7 /2, T /2]. The Fourier transform
(spectrum) of a signal s(¢) is denoted by

S(f):/ s(t)e 2 fidr,  (fER).

Further, the energy of a signal with finite duration is given by

T/2
5= " sopa= [ o,

where the formal extension of the integration limit is for conve-
nience.
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Figure 4: Beampattern of g(¢) (solid line) and impulse g (¢)
(dashed line) arriving at 90° on array 24 with 4 elements at distance
2 and of narrowband signal with wavelength  (dash-dotted)
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Figure 5: Beampattern of g(7) (solid line) and impulse g (¢)
(dashed line) arriving at 90° on array 14 with 4 elements at distance

and of g(¢) (dash-dotted line) and impulse g (¢) (dotted line) on
array 1 with Hamming shading

6.2 Appendix 2

We use the frequency domain formulation for the calculations. The
maximum value of the beampattern can then be upper bounded by

N—1
BP( ’/| mS(f)Pdf
—1
[ st Izdfl l?
=0
N—-1
<ES |h ? o1 (16)
n=0 n=0
N—1
:ESN |hn|27
n=0

where (16) results from the Cauchy sum inequality [4] and
where equality holds if and only if for all

=, €C. (17)

Hence, the maximum mainlobe level is obtained if all the 4, are
equal; then

BP( , )?=N’h E; = N’ maxh,Ej.
n
It can be easily proven that for this case, the ratio in (13) simplifies

to the maximum value N.
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Figure 6: Beampattern of g(¢) (solid line) and impulse g (¢)
(dashed line) arriving at 90° on array 24 with 4 elements at distance

and of g(¢) (dash-dotted line) and impulse g (¢) (dotted line) on
array 1 with Hamming shading
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Figure 7: Beampattern of g(7) (solid line) and impulse g (¢)
(dashed line) arriving at 90° on array 14 with 4 elements at distance

and of g(¢) (dash-dotted line) and impulse g (¢) (dotted line) on
array 1 with different prefilters
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