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ABSTRACT 
This work deals with the problem of estimating the directions of 
arrival (DOA) of multiple radar targets present in the same 
range-azimuth resolution cell of a surveillance radar by joint 
processing the sum (Σ ) and delta ( ∆ ) channel data. The AML-
RELAX estimator, previously derived by the authors, is ex-
tended to a two-channel system, and compared to the classical 
monopulse system.  

1. INTRODUCTION 

This work is a follow-up of [1], where we proposed a method 
making use of only one receiving channel, the sum channel, to 
estimate the parameters of multiple targets. The proposed algo-
rithm is based on the asymptotic maximum likelihood (AML) 
technique; it exploits knowledge of the antenna main beam pat-
tern and the fact that the mechanical scanning antenna impresses 
an amplitude modulation on the signals backscattered by the tar-
gets [2]. Here, we generalize the AML estimator to the case of 
two tightly matched receiving channels (sum and difference) and 
we compare its performance to that of the monopulse system [2, 
Ch. 4]. 
The rest of this paper is organized as follows. The data model and 
problem statement are briefly introduced in Section 2. In Section 
3, we generalize the AML-RELAX estimator to the case of Σ  
and ∆ . In Section 4, the performance of the two-channel AML-
RELAX is compared with that of the classical monopulse system 
for the single and multiple target scenarios. Concluding remarks 
are reported in Section 5. 

2. DATA MODEL AND PROBLEM STATEMENT 

In typical phased array radars, a single beam is formed on trans-
mission and two or more beams are formed on reception. In this 
work, we consider a linear array radar that uses the channel Σ  on 
transmission and two matched channels, Σ  and ∆  on reception. 
The two channels, or antenna patterns, are defined as the complex 
amplitude profiles versus target azimuth angle. For a linear array, 
the patterns can be determined by the antenna weighting coeffi-
cients Σw  and ∆w , the number of elements K, the element spac-
ing d, and the operating wavelength λ. A target positioned at the 
angle TGθ  will present the directional vector 

( ) ( )( ) 1 exp 2 exp 2( 1)
T

TG j j Kθ πφ πφ=  −  s  where 

sin( )TGdφ θ λ= . The antenna beam patterns Σ  and ∆  can then 

be generated as ( ) ( )H
TG TGq θ θΣ Σ= w s  and ( ) ( )H

TG TGq θ θ∆ ∆= w s . 
The sum beam pattern ( )TGq θΣ  is a real and even amplitude func-
tion with its maximum at the steering direction and the difference 

beam ( )TGq θ∆  is real and odd with zero response at the steering 
direction. The shapes of the beams depend on the weights Σw  

and ∆w . We use here  [1 11 1]T
Σ =w  and 

[1 1 1 1]Tj∆ = − −w  [3], so we have 
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The phase term in (1) and (2) can be neglected without loss of 
generality [2]. If both the beams are mechanically steered during 
the time-on-target with constant angular velocity Rω  rad/s, the 
antenna introduces an amplitude modulation on the target signal, 
in both the channels, that depends on the target azimuth position 
and on the instantaneous boresight of the array, 
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where 0, 1, 1n N= −… , T=1/PRF is the radar pulse repetition 
time (PRT) and PRF is the pulse repetition frequency. The num-
ber N of pulses between the one-way -3 dB points is given by 

( )B RN Tθ ω= , where Bθ  is the –3 dB azimuth beam width, i.e. 

the angle such that 2 ( 2) 1 2norm Bq θΣ ± = . 
 As previously stated, this system, as the monopulse system, 
uses the Σ  channel on transmission and the Σ  and ∆  channels 
on reception. Therefore, the overall modulation introduced by the 
antenna on the target amplitude is represented on the sum channel 
by the vector Σg  and on the difference channel by the vector ∆g , 
where 
  2( , ) ( , )TG norm TGg n q nθ θΣ Σ=  (5) 
and 



 

  ( , ) ( , ) ( , )TG norm TG norm TGg n q n q nθ θ θ∆ Σ ∆=   (6) 
 

In our analysis we set 0.5d λ =  and, to obtain a sum pattern 

beam width 2Bθ ≅  we set K=51 receiving elements. 
Assume now that M point-like targets, with directions of arrival 

1{ }M
TG i iθ =  and Doppler frequencies 1{ }M

Di if =  are present in the 

range-azimuth resolution cell under test. The 2 1N ×  data vector z 
is composed by the collection of the 2N echoes received during 
the ToT, N on the sum channel and N on the difference: 

[ ]T T T
Σ ∆=z z z , where T  is the transpose operator. The nth ele-

ments of the 1N ×  vectors Σz  and ∆z  are 
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where bi is the unknown complex amplitude of the ith target sig-
nal, [0, )TGi Bθ θ∈ , and ( 0.5,0.5)Dif ∈ −  is the Doppler frequency 
of the ith target normalized to the PRF. The terms ( )d nΣ  and 

( )d n∆  model the additive noise in the two channels, composed 
by the superposition of clutter and thermal noise. The estimation 
problem is investigated here under the assumptions that they are 
stationary, mutually independent, complex processes, independ-
ent of the signal components. In vector notation, the data model 
for M targets is given by ( )= +z A b dθ , where 

[ ]1 1 2 2( ) ( , ) ( , ) ( , )TG D TG D TGM DMf f fθ θ θ=A a a aθ  is the 

N M×  steering matrix , 1 2[ ]T
Mb b b=b  is the 1M ×  vec-

tor of the unknown deterministic complex amplitudes, 
1 1[ ]T

TG TG M D D Mf fθ θ=θ  is the 2 1M ×  vector of the 

unknown DOAs and Doppler frequencies, ( , )TGi Difθa  is a 
2 1N ×  steering vector, factored as 
( , ) ( ) ( )TGi Di TGi Dif fθ θ=a g p , where  represents the Ha-

damard product or element-wise multiplication, and 
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Note that ( )TGiθg  is only function of TGiθ , whereas ( )Difp  is 
only function of Dif . The 2 1N ×  noise vector d is given by 

[ ]T T T
Σ ∆=d d d , where Σd  and ∆d  are modelled as independent 

random vectors, sum of thermal noise [ ]T T T
Σ ∆=n n n  and clutter 

[ ]T T T
Σ ∆=c c c . The thermal noise n is modelled as a complex zero-

mean white Gaussian vector. In shorthand notation, 
2~ ( , )nCN σn 0 I , where 2

nσ  is the variance of each noise com-

ponent and I is the 2 2N N×  identity matrix. Clutter vectors Σc  

and ∆c  are modelled as a complex Gaussian distributed random 
vectors having zero-mean and covariance matrix 

2{ }H
cE σ∆ ∆ ∆ ∆=c c M , and 2{ }H

cE σΣ Σ Σ Σ=c c M , respectively, where 
H  is the conjugate-transpose operator and 2

cσ ∆  and 2
cσ Σ  are the 

variances of each clutter component, ∆M  and ΣM  are the nor-

malized covariance matrices: [ ] [ ], ,
1

i i i i∆ Σ= =M M  for 

1, 2, ,i N= . In this work, for ease of treatment, we assume 
2 2 2
c c cσ σ σ∆ Σ= = , and ∆ Σ=M M . Therefore, the disturbance co-

variance matrix is  
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where NI  is the N N×  identity matrix, 2 2 2
d c nσ σ σ= +  is the total 

disturbance power and M  is the normalized disturbance covari-
ance matrix, which is given by: 1( 1) ( )cCNR CNR−= + +M M I , 

where 2 2
c nCNR σ σ=  is the clutter-to-noise power ratio. In this 

work we assume that M  is a priori known, whereas 2
dσ  may be 

unknown. In realistic radar scenarios M  must be estimated from 
secondary data, as described, as instance, in [4].  
The goal here is to estimate jointly vectors b and θ  based on the 
observation of z. No a priori information for θ  and b is as-
sumed; they are modelled as unknown deterministic constants. 
Under this assumption, the data vector z is complex Gaussian 
distributed. 

3. THE TWO-CHANNEL AML-RELAX ESTIMATOR 

Derivation of the ML estimator is similar to that outlined in [1], 
provided that z is as in (7). After straightforward manipulations, 
we find: 
 

  1 1 1 1ˆ arg max ( )H H H
ML

− − − −= z M A A M A A M z
θ

θ , (11) 
 

  
1 1 1ˆ ( )H H

ML
− − −=b A M A A M z , (12) 

 

where, for ease of notation, we omitted the dependence of ( )A θ  
on θ .  
Calculation of ˆ

MLθ  requires the 2M-dimensional (2M-D) nonlin-
ear maximization of the functional in (11), where 

1 1[ ]T
M Mf fθ θ=θ  denotes the generic parameter 

vector and the subscript 2N points out that the functional depends 
on the number of samples. Generally, this maximization is com-
putationally cumbersome. To trade off performance with compu-
tational complexity, a sub-optimum algorithm was derived in [1] 
based on the asymptotic (large sample size) maximum likelihood 
(AML) technique. Under the hypothesis that the Doppler fre-
quencies are sufficiently separated, that is 1Di Djf f N− ≥  when 

i j≠ , the AML estimator calculates an estimate of θ  from the 
locations of the M highest peaks of the functional in (11), calcu-
lated for the single target scenario (M=1).  
 

  
21

1

( )ˆ arg max
( ) ( )

H

ML H

−

−=
θ

z M a θ
θ

a θ M a θ
. (13) 

 

It is less computationally heavy than the ML of (11), since it re-
places the 2M-D nonlinear search required by the ML with the 
search of the locations of the M highest peaks of a 2-D functional. 
The complex amplitudes are then estimated from (12) by making 
use of ˆ

MLθ  previously derived. To implement efficiently the 
AML estimator we used an algorithm based on the RELAX 



method that decouples the multidimensional maximization prob-
lem into a series of simpler 2-D problems. The details on the 
AML-RELAX algorithm are not reported here for lack of space, 
they can be found in [1]. We investigated the performance of the 
two channel estimator and compared it with that of the single 
channel estimator in [1] in the multiple target scenario. Here we 
focus our attention on the comparison between the two-channel 
AML-RELAX and the monopulse estimator.  

4. THE MONOPULSE ESTIMATOR 

The monopulse technique is a classical method to estimate the 
direction of arrival of targets in tracking and surveillance radar. In 
principle it can work with just a single pulse and with the two 
channels Σ  and ∆ . The estimate T̂Gθ  of the target DOA is a 
function of the ratio of the ∆  and Σ  channel outputs z∆  and zΣ . 
In detail, the signal processor forms the monopulse ratio defined 
by { }r z z∆ ΣRe where { }Re  denotes the real part. In ab-
sence of disturbance and in presence of a single target, the mo-
nopulse ratio reduces to 
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( )

TG

TG
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g

θ
θ

∆

Σ

  
 
  

Re  (14) 

 

from which, assuming r is monotonic in off-boresight angle, the 
angular location of the target may be uniquely determined. The 
statistical characteristics of the monopulse ratio have been studied 
in presence of disturbance and jammers in many papers (see as 
instance [2] and references therein).  
When the radar receives N pulses [ (0) ( 1)]Tz z N∆ ∆ ∆= −z  
and [ (0) ( 1)]Tz z NΣ Σ Σ= −z , the monopulse ratio and the 
estimate of the target DOA can be calculated for each pulse. Fi-
nally, we obtain 1 ( )

0
ˆ ˆN n
TG TGn

Nθ θ−

=
= ∑  where ( )ˆ n

TGθ  is the target 
DOA estimate for each pulse. We treat the situation in which the 
source can be considered static with respect to the radar during 
the time-on-target (ToT), that is, during the recording of the N 
pulses. In this case, due to the scanning movement of the antenna, 
the monopulse estimator is biased and the bias b can be calcu-
lated. It is easy to verify that 

{ }ˆ ( 1)( 2) 2TG TG Bb E N Nθ θ θ− = − −  then the DOA unbiased 

estimator is 1 ( )
0

ˆ ˆN n
TG TGn

bθ θ−

=
= −∑ . The classical monopulse esti-

mator is thought for only one source, then for comparison pur-
poses, we use the AML estimator (13). 
The root mean square error (RMSE) is derived by running 104 

Monte Carlo runs. In all the runs, the clutter power spectral den-
sity (PSD) is assumed to have a Lorentzian shape symmetrically 
located around the zero frequency. As a consequence, the autoco-
variance function (ACF) has exponential shape and the elements 
of the clutter covariance matrix are given by [ ] 2 i j

cij
σ ρ −

Σ =M  

with 1ρ < , ρ  is the clutter one-lag correlation coefficient. The 
reference scenario is related to the following set of parameters: 
azimuth –3 dB beam width: 2Bθ = ° ; number of integrated 
pulses: 16N = ; number of targets: 1M = ; target DOA: 

1 1.5TGθ = ° ; target Doppler frequencies: 1 0.3Df = ; signal-to-
disturbance power ratio: 20SDR dB= ; clutter-to-noise power 
ratio: CNR dB= −∞ . The analysed scenarios are obtained by 

changing only one parameter, while keeping all the others con-
stant. Performance have been investigated as a function of N , 
SDR , CNR , 1TGθ , and 1Df  and the results are shown in Figs. 1-
5. The AML estimator always outperforms the monopulse DOA 
estimator and the improvement increases with increasing CNR. 
For completeness, in Fig. 6 we report the histogram of the mo-
nopulse and AML DOA estimators when two targets are present 
in the same range-azimuth cell as in Section 3. target DOAs: 

1 2[ ] [1.5 0.9 ]TG TGθ θ = ° ° ; target Doppler frequencies: 

1 2[ ] [0.3 0.3]D Df f = − ; signal-to-disturbance power ratio: 

1 2 20SDR SDR SDR dB= = = . As known, the monopulse tech-
nique provides only one estimate, somewhere in the direction of 
the “power centroid” of all the targets. Unfortunately, the position 
of any individual target differs substantially from this average 
angular position and the measured statistic is not applicable to 
track any of the targets in the antenna main beam. 

5. CONCLUSIONS 

In this work, we considered the problem of estimating the DOA 
of either single or of multiple radar targets present in the same 
range-azimuth resolution cell. We compared the performance of 
the AML-RELAX estimator that uses data from both sum and 
difference channels with that of the monopulse estimator. Our 
findings can be summarized as follows. 
• The use of the AML estimator improves the DOA estimation 

with respect to the monopulse technique. A suitable example 
is the following. To obtain an 2

1
ˆ( ) 3 10TGRMSE θ −< ⋅  with the 

monopulse estimator we need at least N=64, with the AML 
estimator N=16 suffices. The improvement is particularly 
sensitive when the clutter is dominant with respect to the 
thermal noise. As a matter of fact, when CNR → −∞  and 
SDR=20 dB, 2ˆ( ) 3 10TG AMLRMSE θ −

− ≅ ⋅  and 
2ˆ( ) 6 10TG MonoRMSE θ −

− ≅ ⋅ ; for CNR → +∞  and SDR=20 dB, 
3ˆ( ) 8 10TG AMLRMSE θ −

− ≅ ⋅  and 2ˆ( ) 6 10TG MonoRMSE θ −
− ≅ ⋅ . 

• Under the hypothesis that 1 2 1D Df f N− > , the AML esti-
mator provides very similar performance in both cases of ei-
ther one or two targets in the same resolution cell; conversely, 
as it is well known, the monopulse technique completely fails 
by providing an erroneous DOA measure, not useful to track 
any of the targets in the antenna main beam. 
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