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ABSTRACT

We present a method for combining a number of Sup-
port Vector Machines trained independently in the eigenface
space and we apply it to face class modeling. We first train
several SVMs on subsets of some initial training set and then
combine their expertise using various probabilistic combin-
ing rules. This approach is compared to a classical SVM
classification as well as Multiple SVM classification[1].

1. INTRODUCTION

Automatic face detection is the first step of face analysis and
needs to be precise and robust as it directly affects the per-
formance of the next stages of processing. The complexity
of modeling the face class is due to the large intra-class vari-
ability, as faces are highly deformable objects whose appear-
ances depend on numerous factors (lighting conditions, pres-
ence or absence of occluding objects, and so forth). More-
over, the non-face class is a very broad concept and modeling
it proves to be very difficult.

In the last years, many methods have been proposed and
we give hereafter a brief overview of some of the most sig-
nificant of them.

There are two important aspects in a good face detection
system: the speed of the detection and the classification per-
formance. A fast algorithm, proposed by Viola and Jones[2],
uses simple rectangular Haar-Like features boosted in a cas-
cade structure. We have used this fast approach as a pre-
processing step in order to reduce the search space. How-
ever, even if the cascade results in a very fast detector, the
false positive rate remains too high.

The method reported by Rowley et. al. in [3] is one of
the most representative for the class of neural network ap-
proaches. It comprises two modules: a classification module
which hypothesizes the presence of a face and a module for
arbitrating multiple detections.

Sung and Poggio have developed a clustering and distri-
bution-based system for face detection [4]. There are two
main components in their system: a model of the face/non—
face patterns distribution and a decision making module. The
two class distributions are each approximated by six Gaus-
sian clusters.

Osuna et. al. developed a face detector based on SVM
trained directly on the intensity patterns [5]. A brief descrip-
tion of the SVM is given in this paper also.

In [6], Popovici and Thiran proposed to model the face
class using a SVM trained in eigenfaces space. They showed
that even a very low dimensional space (compared with the
original input space) suffices to capture the relevant informa-
tion when used in conjunction with a powerful classifier, like

anon linear SVM.

Then some studies tried to deal with large datasets by
using experts trained on the original dataset. For example
Bengio and al. [7] used parallel SVMs trained on subsets of
large scale problems.

An improvement applied to face detection was presented
in [1]. They use a mixture of SVMs (MSVM) to reduce the
complexity of the problem for both training and testing. The
idea is to split the original face training set into several sub-
sets chosen either by random sampling or clustering. They
train a SVM on each of the subsets and then train a second
layer SVM to combine the outputs of the first layer SVMs.
They showed that it also improves the generalization capa-
bilities compared to a single SVM trained on the complete
dataset.

We now propose another way of combining the expertise
of the first layer SVMs. Instead of using directly the margins
we use a probabilistic approach based on the estimation of
the posterior probabilities output by the first layer SVMs. We
then use basic probabilistic combination rules for taking the
final decision. This idea of using simple combination rules to
combine the decision of several classifiers has been studied
in [8].

We will introduce the motivation for combining SVMs
and we will justify its use both from a theoretical perspective
and its efficiency in the case of face class modeling. In sec-
tion 2 we will briefly review the SVM theory, the estimation
of the posterior probabilities and then we will describe in de-
tail the combination approach. The classifier will be trained
on face and non face examples pre-processed by PCA, as de-
scribed on section 2.1. Finally, in sections 3 and 4 we present
some experiments and comparisons with classical SVM and
we draw some conclusions.

2. MIXTURES OF SVMS

2.1 Construction of the Eigenfaces

As each image is made of a large number of pixels, we use
Principal Component Analysis (PCA) to decrease the dimen-
sionality of the image space. We first recall the definition
of PCA complemented by the distance from feature space
(DFFS) as discussed in [1].

2.1.1 Principal Component Analysis (PCA) and Eigenfaces

Let xq,...,x; € R" be a set of n—dimensional vectors and
consider the following linear model for representing them

X = W(k)z+/.1



where W(k) is a n x k matrix, z € R¥ and the columns of
W) are given by the dominant k eigenvectors of the sam-

ple covariance matrix! § = %Zl(xi — W) (x; — )’ such that
Sw; = Aw; and where p is the sample mean. Some de-
tails about the estimation of the eigenfaces space dimension-
ality such as classification in eigenfaces space using SVMs
are shown in [6]. This dimensionality reduction technique is
very popular in face analysis where the principal directions
are called eigenfaces [9],[10].

The distance between a given image and the face class
is decomposed in two orthogonal components: the distance
in feature space corresponding to the projection onto the
lower dimensional space and the distance from feature space
(DFFS)(see Eq. 1) accounting for the reconstruction error.

DFFS = /|jx— > — 2| €]
Given this and considering that the DFFS still contains some
useful information for classification, we can improve the dis-
crimination power by adding the value of the DFFES to the
projection vector. Thus considering that we keep 85% of to-
tal variance with the k first eigenvectors, we use the following
vectors to perform the classification.

X= ('xl7"'a-xk7'xk+1)7

where x1,...,x; represent the projection onto the k— dimen-
sional eigenfaces space and x; | the DFFS.

2.2 An overview of Classical SVM

Let us begin with a brief overview of the classical SVM al-
gorithm. More information about SVM can be found in [11],
[12].

Let {(x;,y)|i=1,...,1} CR"x{—1,+1} be a set of ex-
amples. From a practical point of view, the problem to be
solved is to find that hyperplane that correctly separates the
data while maximizing the sum of distances to the closest
positive and negative points (i.e. the margin). The hyper-
plane is given by?:

hwp(x) = (w,x)+b=0
and the decision function is
f(x) = sgn(hw(x)) = sgn((w,x) +b)

In the case of linearly separable data, maximizing the
margins means to maximize ﬁ or, equivalently, to mini-

mize ||w||%, subject to y;((w,x) +b) > 1. Suppose now that
the two classes overlap in feature space. One way to find the
optimal plane is to relax the above constraints by introduc-
ing the slack variables &; and solving the following problem
(using 2-norm for the slack variables):

!
min ||w||2—&-Cz:§,-2
&w.b i=1

yil{w,x;))+b) > 1-§

subject to Vi=1,...,l

'We denote with a prime symbol the transpose of a matrix or a vector.
ZWe use (-,-) to denote the inner product operator

where C controls the weight of the classification errors (C =
oo in the separable case).

This problem is solved by means of Lagrange multipliers
method. Let a; > 0 be the Lagrange multipliers solving the

problem above, then the separating hyperplane, as a function
of ¢, is given by

hop(x) =Y yioy(xi,x)+b

iro;>0

Note that usually only a small proportion of ¢; are non-zero.
The training vectors x; corresponding to ; > O are called
support vectors and are the only training vectors influencing
the separating boundary.

In practice however, a linear separating plane is seldom
sufficient. To generalize the linear case one can project the
input space into a higher—dimensional space in the hope of
a better training—class separation. In the case of SVM this
is achieved by using the so—called “kernel trick”. Basically,
it replaces the inner product (x;,x;) with a kernel function
K(x;,x;). As the data vectors are involved only in this inner
products, the optimization process can be carried out in the
feature space directly. Some of the most used kernel func-
tions are:

K(x,z) = ({x,2) + l)d
K(x,2) = exp(—7llx—z|?)

the polynomial kernel
the RBF kernel

2.3 Conditional Probabilities Estimation

The decision function f(x) = sgn(hw(x))) of the SVM is
directly based on the uncalibrated value of the margin. How-
ever in order to efficiently use the quantity output by the
SVM it would be interesting to have a posterior probability
output. This is exactly what we need for the combination of
the SVMs in our study. One way of transforming the margins
in posterior probabilities consists in training directly a kernel
classifier using maximum likelihood. A more appropriate
method was proposed by Platt in [13]. He uses a sigmoid
function to map the margins into probabilities. The advan-
tage of this technique is that we directly obtain the posterior
probabilities P(c = +1|f) instead of estimating the class con-
ditional densities. Eq. 2 shows the form of such a sigmoid:

1
1+exp(Af+B)
The parameters A and B are trained using maximum like-
lihood estimation from the training set, see [13] for details.

An interesting and important point is that the error function
is not changed by this calibration process.

Plc=+1]f) = @

2.4 Combining SVMs

SVM techniques are well known since a few years for many
reasons, among them their generalization capabilities. How-
ever, as explained in the previous subsection, training a SVM
usually requires solving a quadratic optimization problem,
which means it also varies quadratically with the number of
training examples. We know by experience that due to the
large variability of both face and non face classes, building
a face detection system requires a large amount of examples.
In order to improve the speed of the process, we use a par-
allel structure of SVMs similar to the one introduced in [7]



and [1]. We decompose the initial training dataset into sev-
eral subsets (either by random sampling or by clustering, as
in [1]) and train a SVM with each of these subsets. Then
the final decision is made accordingly to some combination
rules based on the posterior probabilities estimated from the
margins output by the SVMs using Eq. 2.

By reducing the size of the training data we also decrease
significatively the complexity of the optimization problem
and also reduce the influence of eventual outliers or noise
in the initial database.

We now focus our work on the combination of the first
layer classifications. In [1] a second layer SVM was used to
combine the decisions. It was directly trained on the margins
output by the first layer SVMs. For this another independent
subset was also needed. However in this scheme a useful
information has been ommited: We know that more than the
margins, we can estimate the posteriori probabilities of the
first layer SVMs. This calibration of the outputs allows us to
directly combine them using basic rules in order to make the
final decision.

Let us recall the context. Consider that we want to clas-
sify a pattern x in one of the C classes (ci, ...,c¢c). We model
each of the C classes by the probability density functions
p(x|ck) and its a priori probability by P(cy). Assume that
we have N SVMs. Thus denote by p;(ck|x) the posterior
probability estimated from the j-th SVM that x belongs to
class c;. The Bayes decision rule acesses that an example x
is assigned to the class c¢; if:

P(ci|x) > P(cg|x), fork=1,...,Cik #i 3)

Eq. 3 relies on the theoretical framework of the classi-

fication task but its computation is very difficult in practice.

That is why we simplify the problem by using some basic

combination rules easier to compute. In our study we focus
on the six following rules:

e Product rule: Example x is assigned to the class ¢; if for
k=1,...Cik#1

Ple) TT pilxle)>Pler) TT pixle) @

j=1,.N j=1,.N

This rule derives directly from Bayes theorem by assum-
ing that the measurements of the different classifiers are
conditionally independent;

e Sum rule: Example x is assigned to the class c; if for
k=1,....Ck#1i

(1—N)P(w;) + 12 Pj(ci|x) > (1 —N)P(wy)+
j=1,..N

Y Pila)+ Y Pilax) )

j=L.N j=1..N

Then from 4 and 5 we derivate four other combination rules.
In all the cases, Example x is assigned to the class ¢; if for
k=1,...Cik # i
e Max rule:
Pi(c; P;
max i (cilx) > max i (cilx)
e Min rule:

j=1,...,

e Median rule:

median;—; _yPj(ci|x) > median;_ __n Pj(ck|x)

e Majority vote:

Y dijx)> Y dix)

j=1,..N j=1,..N

where d; ; = 1 if classifier j assigns measurement x to
class ¢; and 0 otherwise.

In the following, we only consider the binary classifica-
tion problem ( C = 2 )with two classes: face images and non
face images.

3. EXPERIMENTS AND RESULTS

In order to test the Combined SVMs using the previously
introduced combining rules, we did some experiments in
the framework of face detection. We first collected face
images from some classical face databases: BANCA [14],
XM2VTS[15], BiolD[16], FERET[17].

From each of the database, we extracted roughly two im-
ages per identity and then cropped the images to 19x19 pix-
els grayscale images. We thus obtained 3708 face images for
the training and 4295 faces for testing. The non faces ex-
amples were chosen by bootstrapping on randomly selected
images. As face representation we used the PCA decomposi-
tion complemented by the distance from feature space. From
the 361 input pixels reduce the dimensionality to 15 by PCA
decomposition as described in section 2.1. The dimension-
ality of the eigenfaces space was chosen by keeping 85% of
total variation. Then adding the DFFS value to the projection
onto the eigenfaces space yields to a 16 dimensional classifi-
cation vector.

Then as described in [1], we first splitted the face training
data into 5 subsets for training the first layer SVMs. As the
purpose of this paper is to show the efficency of the combi-
nation rules we simply extracted the subsets by random sam-
pling on the original dataset. We also tested splitting the data
by clustering, but then we noticed that each cluster repre-
sented a specific scenario in the databases. Thus the training
focused more on the scenario properties than the face struc-
ture which resulted in a biased combination. In the following,
we only consider the case of random sampling for generating
the subsets.

On each of these subsets (700 faces and 2000 non faces)
we trained a SVM by cross-validation using Radial Basis
Functions as kernels. Table 1 reports the performances of
each of the SVMs on the test set.

The results show the benefits of splitting the data: not
only we reduced the complexity of the training stage, but we
also obtain sparser models (models with less support vec-
tors). It is important to remark that sparser models produce
better generalization capabilities.

Then we compare the performances of the combination
rules in Table 2.

We notice that the “max” and “min” rules are equal be-
cause we work in a binary classification task. On the other
hand the “median” and the “majority” vote return the same
labels because we consider an odd number of SVMs in the
first layer such that the median classifier always belongs to
the majority vote.



Classifier Test(%) | Face(%) | NonFace(%) | # SV
SVM1 95.18 90.47 97.92 223
SVM2 95.96 90.57 97.10 325
SVM3 95.35 88.95 96.97 298
SVM4 95.92 91.70 95.30 255
SVM5 95.40 92.07 97.42 274

Single SVM 94.17 91.40 96.95 1068

Table 1: Total error rate, true positive rate and true negative
rate of the first layer SVMs on the test set made of 4295 faces
and 10000 non faces. Last column represents the number of
support vectors selected for each SVM.

Rule Test(%) | Faces (%) | Non Faces (%)
Max 95.17 92.20 98.15
Min 95.17 92.20 98.15
Median 95.27 92.57 97.98
Majority vote 95.27 92.57 97.98
Product 95.16 92.17 98.15
Sum 95.22 92.32 98.12

Table 2: Combination of the first layer SVMs.

The probability combination rules improve the classifi-
cation power of the first layer SVMs and moreover they im-
prove the classification rates of the faces which is something
important in the context of face detection.

4. CONCLUSIONS

In this paper we presented a method for face class modeling
using Combined Probabilistic SVMs. We propose a tools for
learning a classifier that performs particularly well on large
datasets, as it is needed for face detection. The decompo-
sition of the training set into several parallel subsets yields
parallel classifiers of lower complexity. Then combining the
posterior probability estimations gives also better generaliza-
tion results than the single SVM trained on the complete orig-
inal set. However we noticed in this work that the technique
used for splitting the initial dataset was a key decision that
directly affects the classification rates. Thus depending on
the training data, the random sampling or clustering should
be used for generating the partitions. We are currently work-
ing on finding the best sampling technique according to a
particular dataset, or for example using metrics more appro-
priated than the euclidian one for the clustering. Finally a
more practical step will be to implement this classifier into a
complete face detection system in order to test the accuracy
in real world conditions.
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