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ABSTRACT

Traditional speech recognition systems use Gaussian mix-
ture models to obtain the likelihoods of individual phonemes,
which are then used as state emission probabilities in hid-
den Markov models representing the words. In hybrid sys-
tems, the Gaussian mixtures are replaced by more discrim-
inant classifiers, leading to an improved performance. Most
of the time the classifiers used in such systems are neural
networks. Support vector machines have also been used in
one-modality audio or visual speech recognition, but never
in a multimodal audio-visual system. We propose such a
hybrid SVM-HMM speech recognizer, and we show how the
multimodal approach leads to better performance than that
obtained with any of the two modalities individually.

1. INTRODUCTION

In order to understand speech, humans deal with the prob-
lem of noise by making use of visual information. It is a
well-known fact that human speech perception is bimodal
in nature. The visual modality offers important information
about the place of articulation, and this information is al-
ways used at a subconscious level. The well-known McGurk
effect [1] shows that visual stimuli inconsistent with the au-
dio can change the perceived sound.

Audio-visual speech processing promises to take advan-
tage of the same complementarity of the visual and audio
modalities, improving recognition rates, especially in the
presence of noise, well above those possible with only one
modality (an overview of audio-visual speech recognition is
given in [2]).

A typical audio-visual speech recognition system repre-
sents words with hidden Markov models (HMMs) with each
state corresponding to a phoneme. The emission probability
of each state is modelled by a mixture of Gaussians, trained
with the expectation-maximization algorithm (EM).

But the EM algorithm does not guarantee optimal recog-
nition rates, as it is aimed to model the probability distribu-
tion and not provide the best discriminative representation.
Replacing the Gaussian mixture with more discriminative
classifiers leads to hybrid systems with improved recognition
rates [3, 4]. These classifiers could be neural networks or sup-
port vector machines (SVMs), although between the two, the
SVMs have rarely been used for one-modality systems, and
never for multimodal ones. Ganapathiraju [5] reports very
good results on audio speech recognition with a hybrid SVM-
HMM system, while using only a fraction of the training set
used by a traditional system. On the visual part, Gordan [6]
obtained a high recognition rate using simple visual features,
showing that SVMs are very promising for speech recogni-
tion.

To our best knowledge, a hybrid SVM-HMM system has
never been used for audio-visual recognition. In our hy-
brid system, we employ two different audio-visual integra-
tion techniques, feature fusion and decision fusion, and we

show which of the two works best in the particular case of
SVMs.

2. SUPPORT VECTOR MACHINES

According to the empirical risk minimization principle, on
which many classifiers are based, the distance between a clas-
sifier’s outputs and the desired outputs should be minimized
for the training examples. While this could produce clas-
sifiers that make no errors at all on the training set, the
general goal is to classify unseen examples, that is, to gener-
alize. This led to the principle of structural risk minimiza-
tion, which defines a tradeoff between a classifier’s complex-
ity, and the empirical risk [7]. A too high complexity can
cause overfitting, a situation where the empirical risk is very
small, but the generalization is poor.

Support vector machines are classifiers based on the
structural risk minimization principle. They are derived
from the optimal hyperplane linear classifiers, maximizing
the distance between the separating plane and the closest
data points. The larger this distance is, the higher the gen-
eralization power of the classifier will be. Since real data
is rarely linearly separable, SVMs create a mapping ¢ to a
higher dimensional space, the feature space, where a linear
separation is sought. The SVM training algorithm requires
only inner products in the feature space, which are given by
a kernel function, K(u,v) = (¢(u), ¢(v)). This makes the
computation of the mapping ¢ implicit. Typical kernels are
polynomials and radial basis functions.

For testing, the distance between any data point and the
separating hyperplane can be a good measure of the confi-
dence in the result of classification. In fact, Platt [8] devel-
oped a method to transform this distance into a posterior
probability, P(C|F), that is, the probability that the exam-
ple with feature values F belongs to class C. His method
relies on mapping a sigmoidal function on the outputs of the
SVM.

The fact that SVMs use a separating hyperplane makes
them binary classifiers. However, groups of SVMs can solve
multi-class problems. In our approach, we employ the one-
against-one method, building k(k — 1) machines, each one
discriminating between only two of the k classes. Poste-
rior probabilities are obtained through an optimization per-
formed on the resulting pairwise class probabilities.

But SVMs are also static classifiers, unable to take into
account the temporal dependencies which are very impor-
tant for speech recognition. HMMSs can model exactly this
dependency. In our case, HMMs are used as word models,
while the SVMs serve as phoneme/viseme classifiers. They
estimate the probability that one sample belongs to a certain
phoneme class.

Our implementation employs the LibSVM library [9].
Posterior probabilities are computed with Platt’s algorithm
[8] mentioned above. The kernels that we use in our experi-
ments are radial basis functions (RBFs).



Figure 1: Two images from the Tulipsl database. The pose
differs significantly between the two.
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Figure 2: The same two images as in fig. 1, but normalized.

3. THE DATA

The Tulipsl database [10], which was used in our experi-
ments, is a small audio-video database consisting of 12 sub-
jects (9 male, 3 female) saying the first four digits in English.
Each digit is pronounced twice by each subject, amounting
to a total of 96 words.

The audio part is sampled at 11 kHz with 8 bits per
sample. The video part, digitized at 30 frames per second,
consists of grayscale images with 8 bits per pixel. The reso-
lution of the images is 100x75. Although only the mouth and
the region around it are shown, some movement of the head
is allowed (fig. 1). To take this into account, we implement
a normalization similar to that reported in [11], using hand-
marked points on the lips. The result is that all mouths are
now centered, horizontally aligned and scaled to the same
horizontal size (fig. 2).

As our system requires the synchronization of the audio
and video streams, we limit the audio processing to the speed
of the video stream, extracting features 30 times per second.
These audio features are extracted from overlapping windows
(50% overlap). The size of the window is chosen such that
each audio feature vector corresponds to one video frame.
The audio features used are 12 mel-cepstral coefficients, to-
gether with their first and second derivatives, amounting to a
vector of 36 elements. To simulate natural conditions, white
Gaussian noise has been added to the audio streams, at dif-
ferent signal to noise ratios (SNRs).

The visual features combine two types of information.
The pixels of downsampled images of size 20 x 15 are coupled
with their first temporal derivatives, pixel by pixel differences
between consecutive frames. Such features were proven to
perform well in conjunction with SVMs [6].

Since labelled data is necessary to train the SVMs, im-
ages in half the database have been associated with the cor-
responding visemes. This has been done through visual in-
spection, leaving out any ambiguous examples. Audio frames
have also been labelled accordingly.

4. OUR HYBRID SYSTEM
4.1 Hidden Markov models

Our system is an isolated word speech recognizer, having
left-right HMMSs as word models. An example of such a
word model is given in fig. 3. Let us define aq,q; as the
transition probability from state ¢; to state ¢;. The initial
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Figure 3: A left-right HMM for the word “one”.

transition probability is considered equal to one (mg, = 1).
The emission probability distribution bg, (O¢) = p(O¢|g;) can
be obtained from the outputs of the SVMs p(g;|O;) through
Bayes’ rule.

The purpose of the recognition process is to choose the
most likely word model, given an observation sequence. The
word attached to this model is the recognized word. To this
end we employ the Viterbi algorithm [12]. The likelihood
of the observation sequence O = 0103 - - - Or, given a path
Q = q1g2 - - - qr in the model }, is:

P(O]Q, A) = by; (O1)bg, (O2) - - - bay (Or),

assuming the statistical independence of the observations.
The probability of the path itself is given by:

P(QIN) = T400q142Bq2q3 * * * Qar_1a7-

The joint probability of O and Q occurring simultane-
ously is the product of the two:

p(0,QJN) =

H bg; (O:) - mqq H Aq;q;-

4 €EQ (gi,9;)€EQ

The likelihood of the observation sequence given the
model is the sum of these joint probabilities over all pos-
sible state sequences Q [3]:

p(O[A) = >~ p(0,QIN).

all Q

This “full” likelihood can be replaced by the “Viterbi”
approximation [3], considering only the most likely path in
the model:

P(OIN) = max(p(0, QI

This often-used approximation does not lead to a signifi-
cant performance loss, while facilitating the numerical com-
putation. As a further simplification, we can consider the
state transition probabilities aq,q; as equal and ignore them
altogether. This makes sense as, numerically, the emission
likelihoods have a much larger influence on the result. Since
g, = 1, the joint probability of O and Q becomes:

H b‘h

4 EQ

p(0,Q[\) =

In the end, the recognized word is given by the most
likely word model:

Arecognized = arg mf‘x[p(ol)\)]
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Figure 4: A hybrid SVM-HMM system with feature fusion.
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Figure 5: A hybrid SVM-HMM system with decision fusion.

4.2 Audio-visual integration

Several different methods can be used for the integration of
audio and visual information [2]. The simplest one is feature
concatenation [13], where the audio and video feature vectors
are simply concatenated before being presented to the SVM
classifier (fig. 4). Here, a single classifier is trained with
combined data from the two modalities.

A more complex way of integration is decision fusion,
using two classifiers, one for each modality [2]. Our ap-
proach is early integration, at frame level, having two differ-
ent SVM classifiers, whose outputs will be combined before
being presented to the single HMM. The posterior probabili-
ties P(C|F 4) and P(C|Fv) are weighted with a factor o and
then multiplied:

P(C[Fav) = P(C[Fa)* - P(C[Fy)'~

This expression can be interpreted as a weighted aver-
age in the logarithmic domain. The product rule is one of
the most widely used probability combination rules, along
with the sum rule, the min rule or the max rule [14]. These
rules are compared in [15], with the purpose of combining
the outputs of classifiers trained on different types of audio-
only features. The product rule was found to be the best
performer. The same weighted product rule can be found in
[13], integrating word-level probabilities.

5. EXPERIMENTAL RESULTS

All our experiments were done using the leave-one-out test-
ing procedure. Training was done on eleven of the twelve
speakers in the data set, while testing was performed on the
last one. The procedure was repeated for each one of the
twelve speakers, and the results were averaged.

As noise was added only in the audio, the video-only
performance was constant with respect to the SNR. The two
different types of audio-visual integration were both tested
for all audio SNRs.

Simple feature fusion was disappointing, in the sense
that, for clean audio, the multimodal system performed
worse than the audio-only one (fig. 6). However, for
lower audio SNRs, the multimodal word recognition rate was
higher than the ones obtained with either the audio or the
video.

For decision fusion, the weighting factor a has been tuned
manually for each SNR. The results were very good for high
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Figure 6: Word accuracy with feature fusion.
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Figure 7: Word accuracy with decision fusion.

SNRs (fig. 7), achieving big gains from multimodal process-
ing. The best example is the 10 dB level, where both audio
and video had a performance of around 80% individually,
while when put together this grew to 91%. This certainly
proves the validity of the multimodal approach.

Unfortunately, in the case of low SNRs, the same behav-
ior could not be replicated. The performance dropped to the
level of the video-only system.

The three graphs in fig. 8 represent the variation of the
word recognition rate for different weighting factors «. The
predictable result is that the weight that should be assigned
to the audio is linked to its SNR. A higher SNR means more
importance should be given to the audio stream.

There is a point on each of the three graphs where the
two modalities seem to be complementary, and the combined
result is better than for each of them individually. An au-
tomatic method could be derived to find the weight a cor-
responding to this point. We could rely on confidence val-
ues for the one-modality SVMs, in particular the dispersions
of the phoneme/viseme likelihoods. Such dispersions have
been used at word level in [13]. Unfortunately, our experi-
ments with this method show that dispersion is here a poor
measure of confidence. The explanation could be that we
assigned more viseme classes to the same sound, as the same
viseme can differ significantly from speaker to speaker [6].
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Figure 8: The evolution of word accuracy with the weighting
factor « for three different SNR levels.

This lowers the dispersion of the viseme likelihoods, decreas-
ing the confidence. Possible replacements for this confidence
measure could be the audio SNR or amount of voicing, both
estimated from the audio stream [2].

6. CONCLUSION

Hybrid speech recognition systems perform better than sim-
ple HMM-based ones. In this context, although rarely used,
SVMs prove to be a real alternative to neural networks. We
have successfully integrated SVMs and HMMs into a system
that is able to process multimodal data. For this, we used
multi-class SVM classifiers with probabilistic outputs, one
classifier in the case of feature fusion, and two for decision
fusion.

We obtained good accuracy even with the simplest visual
features, showing the discriminating power of SVMs. Most of
the time, the combination of the two modalities lead to bet-
ter performance than any of them individually, proving that
audio and visual information are complementary in speech.

The way in which the modalities are combined is also rel-
evant. We showed that the ability to assign different weights

to each modality, accounting for different environmental con-
ditions, is an important factor in the design of audio-visual
speech recognizers.

Acknowledgement

This work is supported by the Swiss National Science Foun-
dation through the IM2 NCCR.

REFERENCES

[1] H. McGurk and J. MacDonald, “Hearing lips and seeing
voices,” Nature, vol. 264, pp. 746-748, 1976.

[2] G. Potamianos, C. Neti, J. Luettin, and I. Matthews,
“Audio-visual automatic speech recognition: an
overview,” in Issues in audio-visual speech processing
(G. Bailly, E. Vatikiotis-Bateson, and P. Perrier, eds.),
MIT Press, 2004.

[3] N. Morgan and H. Bourlard, “Continuous speech
recognition, an introduction to the hybrid
HMM /connectionist approach,” IEEE Signal Pro-
cessing Magazine, vol. 12, no. 3, pp. 25-42, 1995.

[4] H. Bourlard and N. Morgan, Connectionist Speech
Recognition - A Hybrid Approach. Kluwer Academic
Publishers, 1994.

[5] A. Ganapathiraju, J. Hamaker, and J. Picone, “Hybrid
SVM/HMM architectures for speech recognition,” In-
ternational Conference on Spoken Language Processing,
vol. 4, pp. 504-507, 2000.

[6] M. Gordan, C. Kotropoulos, and I. Pitas, “A sup-
port vector machine-based dynamic network for visual
speech recognition applications,” EURASIP Journal on
Applied Signal Processing, vol. 2002(11), pp. 1248-1259,
2002.

[7] V. Vapnik, The nature of statistical learning theory.
Springer, 1995.

[8] J. Platt, “Probabilistic outputs for support vector
machines and comparison to regularized likelihood
methods,” in Advances in Large Margin Classifiers
(A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuur-
mans, eds.), pp. 61-74, MIT Press, 2000.

[9] C.-C. Chang and C.-J. Lin, LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] J.R. Movellan, “Visual speech recognition with stochas-
tic networks,” in Advances in Neural Information
Processing Systems (G. Tesauro, D. Touretzky, and
T. Leen, eds.), vol. 7, MIT Press, 1995.

[11] J. Luettin and N. A. Thacker, “Speechreading using
probabilistic models,” Computer Vision and Image Un-
derstanding, vol. 65(2), pp. 163-178, 1997.

[12] L. R. Rabiner, “A tutorial on Hidden Markov Models
and selected applications in speech recognition,” Pro-
ceedings of the IEEE, vol. 77(2), 1989.

[13] A. Adjoudani and C. Benoit, “On the integration of au-
ditory and visual parameters in an HMM-based ASR,”
in Speechreading by humans and machines (D. G. Stork
and M. E. Hennecke, eds.), pp. 461-471, Springer, 1996.

[14] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On com-
bining classifiers,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 20, no. 3, pp. 226—
239, 1998.

[15] K. Kirchhoff and J. Bilmes, “Dynamic classifier com-
bination in hybrid speech recognition systems us-

ing utterance-level confidence values,” Proceedings
ICASSP-99, pp. 693-696, 1999.



	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Jean-Philippe Thiran
	Mihai Gurban



