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ABSTRACT

Multichannel Fast QR Decomposition Recursive Least
Squares (QRD-RLS) adaptive filtering algorithms have been
mostly treated in the literature for channels of equal or-
ders. However, in many applications, such as in the case of
Volterra filtering, multichannel algorithms tailored for un-
equal orders are desirable. In this paper, a general formu-
lation for deriving block versions of the Multichannel Fast
QRD-RLS algorithms is introduced. The block type multi-
channel algorithms favor parallel processing implementations
and also attain the reduced computational complexity and
numerical robustness of the Fast QRD algorithms.

1. INTRODUCTION

Multichannel signal processing can be found in a large variety
of applications such as color image processing, multi-spectral
remote sensing imagery, biomedicine, channel equalization,
stereophonic echo cancellation, multidimensional signal pro-
cessing, Volterra-type nonlinear system identification, and
speech enhancement [1]. Multichannel adaptive filtering al-
gorithms can be derived using two distinct approaches: 1) a
block-type approach, where the channels are processed simul-
taneously, and; 2) a sequential approach that processes each
channel individually [2]. This paper considers algorithms
derived from the former approach which is advantageous for
parallel implementations.

The Fast QRD-RLS algorithms for the single-channel
case can be classified according to which error vector (a pri-
orior a posteriori) to update and the type of prediction (for-
ward or backward), see Table 1. The classification of Table 1
can be extended to the multichannel case; the a posteriori
and a priori versions based on backward error updating were
proposed in [3, 4], and their order recursive (lattice) versions
were introduced in [4, 5]. A unified framework for block
Multichannel Fast QRD-RLS algorithms was addressed in
[6], where two new block versions were proposed. In [4], a
more general approach for the sequential processing, which
copes with either equal or unequal channel orders, was in-
troduced and the a priori (transversal and order recursive)
versions of the multiple-order algorithm were presented; the
corresponding a posteriori (transversal and order recursive)
versions were introduced later in [7] and [8], respectively.

In the following, we present a general approach for deriv-
ing block-based multichannel multiple-order fast QRD-RLS
algorithms. Adopting the same structure of the input signal
vector from [4], two new block algorithms (a priori and a pos-
teriori versions are introduced. The former algorithm has to
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Table 1: The FQRD-RLS algorithm classification

Error Prediction
type forward backward
a posteriori  FQRD POS F FQRD POS B
a priori FQRD PRI F  FQRD PRI B

the authors’ knowledge not been published in literature. The
a posteriori version bears similarities to the algorithm in [2],
however, derived from a input signal matrix with a different
structure.

2. BASIC EQUATIONS

The multichannel algorithms of the Fast QRD-RLS family
use the weighted least-squares (LS) objective function de-

fined as
k

E(k) =Y NTIe(i) = e (ke(k) (1)

=0

where e(k) = [e(k) A2e(k —1) )\k/ze(O)]T is a

weighted error vector and may be represented as follows:

d(k) iy (k)
A2d(k —1) M2 (k—1)
e(k) = : - : wy (k)
N¥/24(0) Ak/%ﬁ(o)
= d(k) - Xn(k)wn (k) (2)
where
ek = ol aly - ol (3)
and xi = [z1(k) x2(k) xm (k)] is the input signal

vector at instant k. Note that N is defined as the number
of filter coefficients per channel (for the fixed-order case), M
is the number of input channels, and wx (k) is the MN x 1
coefficient vector at time instant k.

Let Un (k) denote the Cholesky factor of X & (k)X n (k)
obtained by applying the Givens rotation matrix Q 5 (k),
onto X (k). The rotated error eq(k) can be expressed as

eq(k)
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Figure 1: Obtaining the input vector.

and the optimal coefficient vector, wn (k), is the one making
the M N x 1 vector eq2(k) a null vector. To handle the mul-
tiple order-case, an alternative structure of the input signal
vector will be defined in the next section.

3. DERIVING THE MULTIPLE-ORDER
MULTICHANNEL FAST QRD-RLS
ALGORITHMS

This section presents details of the input vector and the input
data matrix needed in the derivation of the new algorithms.

3.1 Alternative definition of the input vector

Let M be the number of input channels and N1, Na,--- , Ny
the number of taps in the tapped delay—lines of each channel
and, hereafter, N = Ei\il N, the overall number of taps.
Without loss of generality, assume Ni > No > - > Ny

Fig. 1 shows an example of a multichannel scenario with
3 channels of unequal orders where N1 = 4, No = 3, N3 =
2, ie, N =4+4342 = 9. The following approach to
construct the input vector,  n(k), was considered in [4]: the
first N1 — N2 samples from the first channel are chosen to
be the leading elements of « x (k), followed by N2 — N3 pairs
of samples from the first and second channels, followed by
N3 — Ny triples of samples of the first three channels and so
far till the Ny — Nary1 M —tuples of samples of all channels.
It is assumed that Nps41 = 0.

Using this definition,
zn+m(k+ 1), is given by

the expanded input vector,

[.’El(k —+ 1) :Ez(k —+ 1)
ear(k+1) mﬁ(k)] P (5)

ey (k+1) =

where P = PpyPp—1---P1 is a product of M permu-
tation matrices that moves the most recent sample of the

ith channel to position p; = >/} 7(Ny — Nyg1) + i (for
i =1,2,--- /M) in vector xnm(k + 1). After the above
process is terminated, we have z X a/(k + 1) = [2%(k +
1) zi(k—Ni1+1)--- xu(k— Na+1)], such that the first
N elements of 'y, 5/ (k+ 1) provide the input vector for the
next iteration.
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Figure 2: Obtaining the lower triangular U n4ar(k + 1).

3.2 The input data matrix

The expanded input data matrix X x4+ (k + 1) can be de-
fined as

wN+M(k +1)
>\1/293N+M(k) X n(k)

. Df(k) o? (6)
/\k/2$N+M(0) O —1)x (N+M)

O —1)x (N+M)

For the triangularization of (6), three sets of Givens ro-
tation matrices are needed [3, 4, 5], Q(k), Q;(k + 1), and

Q(k+1).

Qi(k+1)Q;(k+1)Q(k) X nym(k+1) =

Esu(k+1) 0

Dyg(k+1) Un(k)

/ p—
Qi(k+1)Q(k+1) AR/ 2T o’ P =

Orr—1)x (N+M)
0" 0"
Qy(k+1) | Dyga(k+1) Un(k) | P (T)
Ef (k' + 1) 0

In (7), Q(k) contains Qn (k) as a partition and triangu-

larizes X n (k). Q;(k + 1) is responsible for the zeroing of

matrix Ezq1(k+1); note that when working with a fixed or-

der, it is equivalent to annihilating e?ql(k + 1), the first row

of E ;41 (k+1), against the diagonal of \'/2E(k), generating
Ef (k‘ =+ 1).

From (7) and using the fixed-order matrices Q4(k) em-

bedded in Q(k) and Q;(k+1) embedded in Q ;(k+1), after
some algebraic work, one can write the followmg equations:

{ 1350;2((]2111)) ] = Qy(k) { Al/kaflz(k) ] (8)
)
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In (8), x{ 1y = [x1(k+1) aa(k+1)---za(k+1)]is the
forward reference signal and e?ql (k4+1) is the rotated forward
error; in (9), Ef(k+1) is the M x M forward prediction error
covariance matriz.

However, the permutation matrix P in (7) prevents a
direct annihilation of the first M columns — corresponding

. M

to matrix D ggo(k+1) = [}, (k+1)d ), (k+1) - dll) (k+
1)] — against the anti- dlagonal of E¢(k + 1) using the set
of Givens rotations Qs (k + 1) = Q}(M)(k +1)-- -Q}(g) (k+

1
1D} (k +1).
It can be seen from (7) that this permutation factor,
P = PyPy—q--- Py, will right-shift the first M columns
to position p;, for ¢ = M to 1, in this order. Thus, one need



to nullify only the first N 4 i — p; elements of each d%Q(k +
1). Note that when the position p; = ¢, the corresponding
permutation factor P, will degenerate to an identity matrix.
If this is true for all M channels, this formulation leads to
the equal-order algorithms of [3, 4, 6, 5].

The overall process is illustrated in Fig. 2 for a three-
channel case with the first two channels having equal length,
i.e., p1 =1 and p2 = 2, consequently, P, = Py = I.

Part three of Fig. 2 shows the final result of the process
in (7) for this particular case. The figure illustrates that
the desired triangular shape was not reached so far. Hence,
another permutation factor to up-shift the (N + M —i+1)th
row to the (N 4+ M — p; + 1)th position is needed. Removing
the ever-increasing null section in (7) and using the fixed-
order matrix Qp(k + 1) embedded in Q’;(k + 1), we get

Uvim(k+1) =
Dypo(k+1) Un(k
PQy;(k+1) /\’f}@%f(k)) II)( ) ] P (10
where the permutation matrix P = P1Py--- Py, Py is
responsible for up-shifting the L + M — i + 1 row to the
L+ M — p; + 1 position. From (10) it is possible to obtain

Unsn(k)™ = PT

0 E;'(k+1)
LU+ —U;l(k)quz(Hl)E;l(kH)}
xQ'gr(k+1)P" (11)

which will be used in the next section to derive the a priori
and the a posteriori versions of the algorithm. Also from
(10), we can write

0

l=que|

Dyga(k+1) :| (12)
B9+ 1)

q2( 1
E¢(k+1)

where E(}(k + 1) is the zero order covariance matrix. The
asterisk * is used to denote possible non-zero elements ac-
cording to the process explained above.

4. A PRIORI AND A POSTERIORI VERSIONS

The a priori and the a posteriori versions of this algorithm
are based on updating vectors anta(k-+1) or fx p(k+1),
respectively, also known as the a priori and the a posterior:
backward error vectors [4, 3] where

AU (R (k4 1) (13)
Unimk+Danin(k+1)  (14)

anvim(k+1) =
.fN+]M(k + 1) =

From (5), (11), and (13), we can write

aN(k% } (15)

anu(k+1) = PAV2Q) (k) [ bt 1)

where

r(k+1)

E;T(k+1) [xkﬂ — W (k+ 1):1:N(k)]
NPEFT (k+1)e(k+ 1) (16)

and e (k + 1) is the a priori forward error vector.
Likewise, combining Equations (5), (11), and (14) gives

Fanle+ ) =PQy+0) | FxE) | an)

where

plk+1) = E;"(k+1) [wen - Wik + Dan (k)]

E;"(k+1es(k+1) (18)

e¢(k + 1) being the a posteriori forward error vector.

The matrix inversion operations in (16) and (18) can
be avoided using the solutions presented in [4] and [5] also
applicable to the more general case considered in this work.

The rotation angles in matrix Q,(k) are obtained using

1] ~v(k+1)
Finally, the joint process estimation is performed as
eq(k+1) | _ d(k+1)
|: dqz(k+1) —Qe(k+1) )\1/2dq2(k) (20)
and the a priori error is given by [3, 4]
e(k+1) = ek +1)/7(k+1) (21)

The a posteriori and a priori algorithms are summarized
in Tables 2 and 3. As for the computational complexity, the
algorithm of Table 2 presents a slightly lower load among the
block multichannel fast QRD-RLS algorithms. The number
of multiplications, divisions, and squared roots can be seen
in Table 4. Note that N corresponds to the length of each
channel for the case of equal order and the sum of the length
of each channel in the multiple order case. In the table, the
computational complexities of four algorithms are shown, the
first two corresponding to the proposed approach. Also note
that the algorithm proposed in [2] is expected to have similar
computational complexity as the a posteriori version derived
here since they differ only in the structure of the input vector
and the corresponding permutation matrices.

5. SIMULATION RESULTS

This section describes the application of the proposed al-
gorithms in a second-order Volterra system identification.
Space limitations prohibit minute details, see [2] for a com-
plete simulation setup. The input signal to the unknown
plant with 65 coeffcients was a zero-mean white Gaussian
noise sequence (variance 0.0248) filtered through an FIR sys-
tem given by H(z) = 0.9045 + 2z~ +0.904522. The forget-
ting factor was set to A = 0.995 and the output signal-to-
observation noise ratio was set to 30dB. The MSE (E[e?(k)],
e(k) being the a priori error) versus iterations is presented in
Fig. 3. The curves for both versions considered in this paper
are identical up to numerical accuracy, assuming equivalent
initialization.

6. CONCLUSIONS

In this paper, a general formulation for block multiple-order
multichannel fast QRD-RLS algorithms was introduced. The
new formulation, based on the alternative definition of the
input signal vector as found in [4], provides a block-type mul-
tichannel capable of processing all channels simultaneously
and amenable for parallel implementations. Both a poste-
riori and a priori versions were derived, where the former
is similar to the algorithm introduced in [2] and the latter
is a new multiple-order block-type version of the sequential
algorithm introduced in [4].



Table 4: Computational complexity of Block Multichannel Fast QRD-RLS algorithms.

ALGORITHM
Algorithm of Table 2

Algorithm of Table 3

Lattice a posteriori [5]
Lattice a priori [4]

MULTIPLICATIONS
ANM? +11INM +5M? +6M + TN—
(4M> + 6M) Yo, (pi — 1)
ANM? + 1INM +5M? + 6M + 9N —
(4M? 4+ 6M) 3L, (ps — 1)
AM3N +17TM?N 4+ 12MN + 5M? 4+ 5M
AM3N 4+ 17TM?N + 14MN + 5M? + 6 M

Table 2: The MCFQRD POS B Equations.

For each k, do

{

DIVISIONS
ONM + 2M + N—
2M Zfil(pi —1)
2NM + 3M + 2N —
2M Z?il(Pi - Z) +2
2M?N + 3MN +2M
2M?N +5MN + 3M

SQUARED ROOTS
ONM + M + N—
2M Z?il(pi —1)
2NM + M + N—
2M Zﬁl(pi —1)

M?N +2MN + M

M?N +2MN + M

Table 3: The MCFQRD PRI B Equations.
For each k, do

1. Obtaining Dygo(k + 1) and efqq (k + 1)

el (k+1) xr

fql = k k+1
I O P
2. Obtaining Ef(k + 1)
r oT el (k+1)

— . fql
myy | =t | g
3. Obtaining p(k + 1)
k)

[ = _ Y
4. Obtaining Qéf(k +1)
0

| E$(k+1)

5. Obtaining f (k + 1)
Fnim(k+1) = PQy,(k+1) |:
6. Obtaining Qg (k + 1) and v(k + 1)

1
1 =
7. Joint Estimation
equ(k+1) | _
[ dp(k+1) | = @EFD | y12g,a0)
8. Obtaining the a priori error

(8)

(9)

implements (18)

1. Obtaining Dy (k + 1) and efq1(k + 1)
el (k+1) zl
faql = k k1 8
A O S B
2. Obtaining Ef(k + 1)
o7 ‘ ,

| Byesn | =00
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implements (16)
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| o [ S = NCR S I A I )
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(21) e(k+1)=eq(k+1)/v(k+1) (21)

e(k +1) = eqr(k+1)/7(k +1)
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Figure 3: Learning curves (a priori error).
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