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ABSTRACT

This pap er deals with the application of adaptive signal mo d-
els for representing transients and sinusoids at the same stage
in a parametric audio co der. To accomplish such goal, we
search for sparse approximations by means of matching pur-
suit with a mixed dictionary, instead of using two different
dictionaries that op erate in cascade. In such sense, complex
exp onentials and wavelets are chosen for mo deling the tonal
and transient features of an audio signal, resp ectively. Ex-
p erimental results clearly show the advantages of the mixed
dictionary over two cascaded dictionaries. The approach pro-
p osed in this pap er is successfully applied for parametric au-
dio co ding, assuring b etter quality than MPEG2/4-AAC at
16 Kbits/s for most of the tested audio signals.

1. INTRODUCTION

Parametric or mo del-based co ding of audio signals has b e-
come a p opular to ol for representing audio signals at very
low bit rates [1, 2, 3, 4]. All signal mo dels assume an un-
derlying structure to the signal in question. A wide range
of audio signals intuitively fit into the three-part mo del of
Sines, Transients and Noise.

Several approaches have b een adopted in literature con-
cerning the order in which the sinusoidal and transient mo d-
els are applied. In all approaches, the noise mo del is applied
to the residue resulting from the sinusoidal and transient
mo dels. Most of the more recent STN mo del-based audio
co ders [3, 4, 5] apply sinusoidal co ding after transient co d-
ing, followed by noise co ding. The reasoning b ehind this ap-
proach is that sinusoids are suitable functions for mo delling
the tonal, quasi stationary asp ects of an audio signal. The
presence of transients disturbs the stationarity of the audio
signal, thus complicating the task of the sinusoidal mo del
(i.e. if a sinusoidal mo del represents a signal onset, the at-
tack b ecomes smeared in time, resulting in a pre-echo). By
removing transients from the audio signal prior to sinusoidal
mo deling, this problem is avoided. This approach provides
high quality audio co ding at low bit rates, but it has two
main drawbacks: 1) Since transients and sinusoids are mo d-
eled in cascade, mismatch problems can app ear if the two
comp onents are not prop erly separated when a signal on-
set is detected; 2) Transient detection to ols very often fail
to detect micro-transients [1], which would not b e prop erly
represented if transients and sinusoids are mo deled in cas-
cade.

At the sight of these problems, we prop ose mo deling
transients and sinusoids at the same stage of the enco der.
To accomplish such goal, we search for sparse approxima-
tions by means of matching pursuit with a mixed dictionary.
The dictionary must b e defined from two typ es of functions:
1) functions that well-match to sharp transitions in the sig-
nal; 2) functions that represent the tonal, quasi stationary
asp ects of an audio signal. In such sense, complex exp o-
nentials and wavelets are chosen for mo deling the tonal and
transient features of an audio signal, resp ectively.

2. SPARSE APPROXIMATIONS: MATCHING
PURSUIT

Matching pursuit was intro duced by Mallat and Zhang [6].
Let’s supp ose an approximation of the signal x[ n ] as a linear
expansion in terms of functions gi [ n ] chosen from an over-
complete dictionary. Let H b e a Hilb ert space. We define
the over-complete dictionary as a family D = {gi [ n ] ; i =
0 , 1 , ..., L} of functions in H, such as ||gi [ n ] || =1.

Matching pursuit is an iterative algorithm that offers
sub-optimal solutions for decomp osing a signal x[ n ] in terms
of unit-norm expansion functions gi [ n ] chosen from an over-
complete dictionary D , where the l2 norm is used as the ap-
proximation metric. At the first iteration, the function (or
atom) gi [ n ] which gives the highest inner pro duct with ana-
lyzed signal x[ n ] is chosen. The contribution of this function
is then subtracted from the signal and the pro cess is rep eated
on the residual. At the m -th iteration, it follows:

rm [ n ] = rm+1 [ n ] + αi(m) · gi(m) [ n ] m ≥ 1 (1)

where αi(m) is the weight asso ciated to the optimum

atom gi(m) [ n ] at the m-th iteration and r1 [ n ] is initialized
to x[ n ].

By computing the orthogonal pro jections of rm [ n ] on el-
ements gi [ n ] ∈ D , the weight asso ciated to each dictionary
element at the m -th iteration is achieved:

αm
i =

〈rm [ n] , gi [ n ] 〉
〈gi [ n ] , gi [ n ] 〉 =

〈rm [ n ] , gi [ n] 〉
‖gi [ n ] ‖2 = 〈rm [ n ] , gi [ n ] 〉 (2)

The optimum atom gi(m) [ n ] at the m-th iteration is ob-
tained by minimizing residual energy:

gi(m) [ n ] = arg min
g i ∈D

‖rm+1 [ n ] ‖2 (3)

From to (1) and (2), expression (3) can b e simplified as:

gi(m) [ n] = arg max
gi ∈D

|αm
i | (4)

As a result, matching pursuit minimizes residual energy
by cho osing as optimum atom at the m -th iteration the most
correlated one with residue rm [ n]. The computation of cor-
relations 〈rm [ n] , gi [ n ] 〉∀gi [ n ] at each iteration implies a high
computational effort, which can b e reduced using the follow-
ing correlation up dating pro cedure [6]:

〈rm+1 [ n ] , gi [ n] 〉 = 〈rm [ n ] , gi [ n ] 〉−αi(m) · 〈gi(m) [ n ] , gi [ n] 〉 (5)

Correlations 〈gi(m) [ n ] , gi [ n] 〉 can b e pre-calculated and
stored. Therefore, it is only required computing correlations
at the first iteration ( 〈x[ n ] , gi [ n ] 〉).



3. MATCHING PURSUIT WITH A MIXED
DICTIONARY OF SINES + WAVELETS

The mixed dictionary D is obtained by merging a dictionary
of complex exp onentials De with a dictionary of wavelets Dw .
Let’s ei [ n] and wi [ n ] denote the elements of the two merged
dictionaries, resp ectively. At each iteration, the algorithm
cho oses either a complex exp onential or a wavelet function,
b eing the implementation different in each case. The al-
gorithm will cho ose the function that extracts the higher
amount of energy from the current residue.

3.1 Implementation with sets of complex exponen-
tials

Using complex exp onential sets, only the frequency of each
exp onential function must b e determined, which involves a
significant reduction of the dictionary size. The functions
that b elong to the considered set can b e expressed as:

ei [ n] =
1√
N
· ej 2 π i

2 L
n ; i = 0 , . . . , L− 1; n = 0 , . . . , N − 1 (6)

The constant 1√
N

is selected to obtain unit-norm func-

tions, N is the length of the analysis frame, and L the num-
b er of frequencies within the dictionary.

At each iteration of the pursuit, the new reside is calcu-
lated according to (7):

rm+1 [ n ] = rm [ n ] − αi(m)ei(m) [ n] − α∗i(m)e
∗
i(m) [ n ]

= rm [ n ] − 2 Re{αi(m)ei(m) [ n] } (7)

By computing the orthogonal pro jections of rm [ n ] on ele-
ments ei [ n ] ∈ De , the set of weights {αm

i , i = 0 , 1 , . . . , L− 1 }
is achieved:

αm
i =

〈rm [ n ] , ei [ n ] 〉 − 〈rm [ n ] , ei [ n ] 〉∗ · 〈e∗i [ n ] , ei [ n ] 〉
1 − |〈e∗i [ n] , ei [ n ] 〉|2 (8)

Using the weights αm
i , the optimal atom ei(m) to b e cho-

sen at the m-th iteration is got according to (4).
To up date the correlations b etween atoms ei [ n ] ∈ De and

the residue at each iteration, we pro ceed as follows:

〈rm+1 [ n ] , gi [ n ] 〉 = 〈rm [ n] , gi [ n ] 〉−
− αi(m)〈gi(m) [ n ] , gi [ n ] 〉−
− α∗i(m)〈g∗i(m) [ n ] , gi [ n ] 〉

(9)

Owing to the nature of the atoms ei [ n ] ∈ De (complex
exp onentials), the correlations required to implement match-
ing pursuit can b e efficiently computed by applying the FFT
algorithm. The initial correlations b etween signal x[ n ] and
atoms ei [ n] ∈ De are expressed as:

〈x[ n ] , ei [ n ] 〉 =
1√
N
·
2L−1∑
n=0

x[ n ] · e−j 2 π i
2 L

n =
1√
N
· X [ i] (10)

where X [ i] is the 2 L -length DFT of the input signal x[ n ],
and L > N in order to assemble an over-complete dictionary.
Likewise, the cross-correlations b etween atoms ei [ n ] ∈ De

can b e expressed as:

〈ei(m) [ n ] , ei [ n ] 〉 = 1
N
·∑2L−1

n=0
e−j

2 π (i − i ( m ))
2 L

n

= 1
N
· U [(( i− i( m))) 2L ]

(11)

〈e∗i(m) [ n ] , ei [ n] 〉 = 1
N
·∑2L−1

n=0
e−j

2 π (i + i (m ))
2 L

n

= 1
N
· U [(( i + i( m))) 2L ]

(12)

where U [ i] is the 2 L -length DFT of the unit function u [ n ].
This transform can b e pre-computed and stored in memory.
Therefore, the implementation of matching pursuits with a
dictionary of complex exp onentials involves: 1) The initial
correlations can b e obtained by a 2 L -length FFT; 2) The
cross-correlations b etween atoms only require a 2 L -length
vector to b e stored in memory.

3.2 Implementation with sets of wavelet functions

We restrict the wavelet-based dictionary to orthonormal
wavelets in order to sp eed up the correlation up dating pro-
cedure and so the matching pursuit (see expression (16)).
The overcomplete dictionary D = Dw is made up of those
functions which give rise to the P -depth full Wavelet-Packet
(WP) decomp osition. The inner pro ducts of the signal with
the wavelet-based atoms in set Dw lead to all the wavelet
co efficients that can b e considered in the P -depth full WP
tree. These co efficients can b e identified using three indexes,
{s, p, k}, which indicate the subband s at a given decomp o-
sition depth, the decomp osition depth p and the delay k ,
resp ectively. The wavelet co efficients at the m-th iteration
and the wavelet-based atoms can b e expressed as follows:

αm
{s,p,k} = 〈rm [ n ] , w{s,p,k} [ n ] 〉 (13)

w{s,p,k} [ n] = w{s,p} [ n− 2 pk ] (14)

Using the weights αm
{s,p,k} given by (13), the optimal

atom w{s,p,k}(m) [ n ] to b e chosen at the m -th iteration is
obtained as follows:

w{s,p,k}(m) [ n] = arg max
w{s,p,k }∈Dw

|αm
{s,p,k}| (15)

The only required correlations to imple-
ment matching pursuit are 〈x[ n ] , w{s,p,k} [ n ] 〉 and
〈w{s1,p1,k1} [ n] , w{s2,p2,k2} [ n ] 〉. The first ones are ob-
tained from the WP transform of x[ n]. Cross-correlations
b etween atoms, which must b e pre-calculated and stored,
fulfill the following formulation [7]:

〈w{s1,p1,k1}, w{s2,p2,k2}〉 =





δ [ k2 − k1 ] s1 = s2,
p1 = p2

0 s2 6= b s1
2p 1−p 2

c
w{s,p} [ k2 − 2 pk1 ] s2 = b s1

2p 1−p 2
c

(16)
where p = p1 − p2 , s = (( s1 )) 2p and p1 ≥ p2 is sup-

p osed. Therefore, according to (16), the iterative pro cedure
to up date correlations requires impulsive resp onses of the
synthesis WP tree branches to b e stored.

3.3 Implementation with the mixed dictionary

When dealing with a mixed dictionary comp osed of complex
exp onentials and wavelets ( D = De + Dw ), matching pur-
suit must compute the weights {αm

i , αm
{s,p,k}} corresp onding

to all dictionary elements {ei [ n ] , w{s,p,k} [ n ] } at each itera-
tion. These weights are computed according to expression
(8) or (13), dep ending on they corresp ond to complex exp o-
nential or wavelet functions, resp ectively. Once the weights
have b een computed, the optimum atom at each iteration is
chosen as the one that maximizes the absolute value of the
weight.



Pre-computing cross-correlations b etween all dictionary
elements is required for the correlation up dating pro cedure.
This task is not obvious when dealing with the prop osed
dictionary, since it dep ends on the typ e of atom selected at
each iteration, giving rise to four different situations:

3.3.1 Correlation between two complex exponentials.

Owing to the nature of complex exp onentials, the cor-
relations required to implement matching pursuit can b e
efficiently computed by applying the FFT. Thus, cross-
correlations b etween atoms ei [ n ] ∈ De are given by expres-
sions (11) and (12) in section 3.1. To up date the correlations
b etween the residue and atoms ei [ n ], expression (9) is used.

3.3.2 Correlation between a complex exponential and a
wavelet function when the complex exponential is chosen.

In this case, though the optimum atom is complex, the sub-
tracted function from the signal is real, as can b e seen in
equation (7). The correlation up dating pro cedure has to pre-
compute the cross-correlations b etween the optimum atom
ei(m) [ n ] and all the wavelet functions w{s,p,k} [ n] ∈ Dw in a
similar way to that of expression (9). This computation can
b e expressed by the DFT thanks to the nature of complex
exp onentials:

〈ei(m) [ n ] , w{s,p,k} [ n ] 〉 =
∑N−1

n=0
1√
N

ej
2 π i ( m )

2 L
nw{s,p,k} [ n ] =

1√
N

W ∗
{s,p,k} [ i( m)]

(17)
where W{s,p,k} [ i ( m)] is the value of the 2 L -length DFT

of w{s,p,k} [ n ] at the normalized frequency i(m)
2L

. Therefore,
the 2 L -length DFT of each wavelet function w{s,p,k} [ n ] has
to b e memory stored for the correlation up dating pro ce-
dure. Memory can b e saved taking into account w{s,p,k} [ n ] =
w{s,p} [ n − 2 pk ], which involves storing only the 2 L -length
DFT of w{s,p} [ n ]. The numb er of 2 L -length DFT to b e
stored is greatly reduced. The remaining correlations can
b e computed by using the time-delay prop erties of the DFT.

3.3.3 Correlation between two wavelet functions.

We have assumed that the dictionary Dw is comp osed of
orthonormal wavelet functions for the sake of complexity re-
duction. In this case, only cross-correlations b etween atoms
w{s,p,k} [ n ] ∈ Dw with heritage relation have to b e consid-
ered, as seen in expression (16). Note that, according to
(16), the iterative pro cedure to up date correlations requires
impulsive resp onses of the synthesis WP tree branches to b e
stored.

3.3.4 Correlation between a complex exponential and a
wavelet function when the wavelet function is chosen.

The optimum atom is now w{s,p,k}(m) [ n] and we intend to
compute the correlation b etween this function and all atoms
ei [ n ] ∈ De :

〈w{s,p,k}(m) [ n ] , ei [ n ] 〉 = 1√
N

∑N−1

n=0
w{s,p,k}(m) [ n ] e−j 2 π i

2 L
n =

1√
N

W{s,p,k}(m) [ i]

(18)
where W{s,p,k}(m) [ i] is the value of the 2 L -length DFT of

w{s,p,k} [ n ] at the normalized frequency i
2L

. In this case, the
correlation up dating pro cedure requires the 2 L -length DFT
of each wavelet function w{s,p,k} [ n ] has to b e memory stored.
As in the case of subsection 3.3.2, the memory requirements
can b e reduced by applying the following prop erty of the
wavelet dictionary: w{s,p,k} [ n ] = w{s,p} [ n− 2 pk ].

To sum up, when a mixed dictionary comp osed of com-
plex exp onentials and wavelets ( D = De + Dw ) is used,
the data that must b e kept in memory are: 1) The 2 L-
length DFTs of the complex exp onentials ei [ n] ∈ De ; 2)
The impulsive resp onses of the synthesis WP tree branches
( w{s,p} [ n]); 3) The 2 L -length DFTs of the wavelet functions
w{s,p} [ n ] ∈ Dw .

4. EXPERIMENTAL RESULTS

We first intend to illustrate the advantages of the prop osed
mixed dictionary against two different dictionaries that op-
erate in cascade for matching pursuit-based parametric au-
dio co ding. For comparison purp oses, matching pursuit
is p erformed under three different approaches: (1) Using
a single dictionary comp osed of complex exp onentials and
wavelets, (2) Cascading a dictionary of complex exp onentials
followed by another of wavelets, (3) Cascading a dictionary of
wavelets followed by another of complex exp onentials. Two
examples are taken for illustrating such advantages.

Figure 1 shows an audio fragment where app ears a signal
onset taken from the castanet excerpt.
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Figure 1: (a) Audio fragment containing a signal onset. (b)
Sinusoids and wavelets extracted from the audio frame by
the first approach. (c) The same components extracted by
the second approach. (d) Idem by the third approach.

As can b e seen, the b est discrimination b etween tonal
and transient features is accomplished by the first approach
(matching pursuit with the mixed dictionary). Cascading
complex exp onentials followed of wavelets (second approach)
gives rise to b oth pre-echo and transient smo othing, while
cascading wavelets followed of complex exp onentials (third
approach) involves to o many transient comp onents are ex-
tracted. The stopping criterion for all cases is the same:
matching pursuit is halted when an atom extracts from the
residue less than 2% of the total energy of the residue.

Figure 2 shows an audio fragment containing a micro-
transient taken from the glo ckenspiel excerpt. The structure
of figure 2 is similar to that of figure 1. The mixed dictionary
obtains again the b est decomp osition. The micro-transient
synthesized by the second approach is less sharp than the
extracted one by the first approach. Further, the third ap-
proach do es not accomplish to represent the micro-transient
b ecause no wavelet function is extracted from the signal.

To assess the p erceptual b ehavior of matching pursuit
with the mixed dictionary, comparison with the third ap-
proach is prop osed, since most of the STN-based audio co der



Figure 2: Audio fragment containing a micro-transient

p erforms transient mo deling followed by sinusoidal mo del-
ing. One-channel audio signals taken from the set of ex-
cerpts used in the MPEG standardization activities are cho-
sen for testing. The analysis/synthesis was done on a frame-
by-frame basis using a 50% overlap 23-ms Hanning window
( N = 1024) and L = 4096. We p erformed a listening test us-
ing the double blind triple stimulus metho dology, in which
signal triplets OAB were presented to ten exp erienced lis-
teners. Here, O is the original signal; A and B are the mo d-
eled signals using the first and third approaches, resp ectively.
The listeners were asked to indicate which signal (A or B) is
closer to the original. The results averaged over all listeners
are shown in table 1.

Table 1: Preference for Mixed Dictionary-vs-
Cascaded Dictionaries (%).

Excerpt Preference (%)

Harpsichord 100
Castanets 100
Pitch pip e 52
Bagpip es 46
Glo ckenspiel 100
Plucked strings 70
Trump et solo 56
Orchestra piece 60
Contemp orary p op 100

Matching pursuit with the prop osed mixed dictionary
is usually preferred by listeners for audio signals with high
transient content. In such sense, artifacts like ”clicks”
are avoided for audio frames containing sharp attacks,
and preecho-like distortion is avoided for frames containing
micro-transients due to residue spreading at the time inter-
val where the micro-transient is lo cated. For nearly steady
audio signals, there is no almost p erceptual differences b e-
tween the two approaches. The results in table 1 come to
confirm the comments ab ove.

Next, we intend to reveal the capability of matching pur-
suit with the prop osed mixed dictionary for audio compres-
sion by integrating this Transient+Sinusoidal mo deling to ol
into a parametric audio co der [4]. Figure 3 shows sub jec-
tive results comparing MPEG2/4-AAC at 16 Kbits/s with
the parametric audio co der prop osed in [4]. Listening tests
employed MUSHRA [8] metho dology. The excerpts listed in
table 1 were considered.
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Figure 3: MUSHRA listening test results showing mean grad-
ing and 95% confidence interval.

It was found that the parametric audio co der obtains
b etter sub jective results than MPEG2/4-AAC at 16 Kbits/s.

5. CONCLUSIONS

The letter deals with the application of matching pursuit
with a mixed dictionary comp osed of complex exp onentials
and wavelets for Transient+Sinusoidal mo deling in paramet-
ric audio co ding, as an alternative to matching pursuit with
two dictionaries op erating in cascade. Using the mixed dic-
tionary, b etter sub jective quality of the deco ded audio sig-
nals is achieved. The price to pay is somewhat complexity
increase.

Matching pursuit with the prop osed mixed dictionary
has b een successfully applied for audio co ding purp oses,
showing that synthesized transients are precisely lo cated at
the part of the audio signal where the energy burst is. This
fact is resp onsible of the absence of preecho distortion. Ex-
p erimental results show that the prop osed approach when
integrated into a parametric audio co der obtains b etter sub-
jective results than MPEG2/4-AAC at 16 Kbits/s.
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