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ABSTRACT

An extension of Independent Component Analysis (ICA) to the situ-
ation when the mixture of signals is contaminated by multiplicative
noise is proposed in this paper. The ICA methods search for the
most independent output after a linear transformation of the data
vector. If the ICA model is followed by these data, the result of this
search is the inverse of the unknown mixture. On the other hand,
if there is multiplicative noise the model is not followed and the
previous search does not obtain the wanted matrix. However, when
the inverse of the mixture is applied to the noisy data, the output
possesses a specific statistical structure that can be used to solve
the problem. This paper exploits this structure up to fourth order
in the statistic to design a method that is able to find the mixture
in presence of multiplicative noise, improving greatly the results of
the standard ICA methods in this situation, without any limitation
in the nature of the sources or the noise.

1. INTRODUCTION

The aim of Independent Component Analysis (ICA) is to find the
linear transformation that produces the most independent output of
some data. If these data are linear mixture of independent sources,
which is called /CA model and the mixture the mixing matrix, the
ICA methods can recover the inverse of the mixing matrix and the
original sources. In order to do that, the ICA methods do not need
any information about the mixture or the sources, so the obtaining
is “blind”. ICA was first formalized in [?], and since then it has
been applied to many fields, e.g. speech enhancement, medical sig-
nal processing, image analysis, telecommunications and financial
series, among others. ICA has been extended to other situations
where the ICA model is not exactly satisfied but the assumption of
independent sources allows the generalization of the analysis. The
existence of a bias term, exclusive classes, non-linearities in the
mixture, non-instantaneous mixtures, additive noise, etc. are some
of these situations. In this paper, the goal is to extend the ICA ideas
to the situation when the linear mixture of independent sources is
contaminated by multiplicative noise, which will be called multi-
plicative ICA model or MICA model.

Multiplicative noise appears in problems as ultrasound images,
astrophysics, laser imagery, synthetic aperture radar (SAR) images,
etc. Therefore, in these signals, although the data without noise can
follow the ICA model, the recorded data will never do, so the appli-
cability of the ICA methods is reduced. Such applications have been
done mainly in coherent images, where the multiplicative noise ap-
pears due to the coherent interference between reflected waves in
the formation of the image [?]. In [?], [?] and [?], ICA is applied to
SAR images, and in [?] to ultrasound images. In all these works the
ICA methods are used as if there is no multiplicative noise, so their
applicability is reduced. On the other hand, a method for denoising
images with multiplicative noise using non-linear ICA is developed
in [?] where both, the multiplicative noise and the noise-free image,
are considered as the independent sources and separete.
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The multiplicative noise is taken into account in the separation
of the linear mixture for the first time in [?] and [?], where a method
that exploits the structure of the second- and third-order statistic of
the noisy data is designed. The method is able to extract the mixing
matrix in the MICA model and it gives much better results than the
standard ICA method in these signals. However, the method needs
more than seven sources, with at most one symmetrical (symmet-
ric probability density function (PDF) respect to the mean), to con-
verge to the correct solution [?]. Although the results of this method
are promising, these restrictions make its application to real prob-
lems difficult, especially the limitation in the PDF of the sources,
since the problem is blind and generally there is not control over
them. In [?], a general approach to extend the ideas of the method
to use fourth-order statistic is presented, although without develop-
ing an algorithm and therefore without studying if the inclusion of
this fourth-order statistic can actually overcome the previous limi-
tations. In this paper, an ICA algorithm to extract the mixing matrix
in signals following the MICA model is designed. This algorithm
uses fourth-order statistic, which allows to overcome the limitations
that the method designed in [?] possesses. Specifically, as the new
method uses fourth-order cumulants it can work with symmetrical
signals, while the method in [?] does not because it uses only third-
order statistic and this is null for symmetrical processes. On the
other side, the inclusion of fourth-order cumulants adds new un-
knowns to the problem but also new equations, which are more,
such that the minimum number of sources necessary to solve de-
creases from eight in [?] to only three in this paper.

The paper is organised as follow. The MICA model is pre-
sented in Section II, and the second-, third- and fourth-order statis-
tics of the noisy data are also shown. In Section III, the structure
of these statistics is used to develop the fourth-order multiplicative
ICA (FMICA) method. The convergence of the method is briefly
treated in Sections I'V. In Section V, the FMICA method is compared
with standards ICA methods, and finally the principal conclusions
of the paper are summarized in Section VI.

2. MULTIPLICATIVE ICA MODEL

The MICA model [?] assumes that the signals are a linear mixture
of independent sources contaminated by multiplicative noise. This
can be expressed as:

zi=vix, i=1,...,N with x=As 1)
where s = [s;,. .. ,SN]T is the vector of independent sources, v =
[vi,...,vy]T is the multiplicative noise, which is formed by mutu-

ally independent random variables with mean one and the noise-
free data x and this noise are also independent [?]. A is the N x N
mixing matrix and N is the number of signals. For simplicity, real
signals and the same number of sources and signals are assumed
in the paper, but these assumptions can be relaxed without loss of
generality. The covariances, third- and fourth-order cumulants of
the noisy observations z can be related to the covariances and third-
and fourth-order cumulants of the noise-free data x, the noise v and
the independent sources s.

The covariance between two elements z and z; of the vector
z is defined as o}, = E{(zi— 1) (z; — ,ujz.)}, where y} is the mean



of the signal z; and &{-} is the expectation operator. The third-
order cumulant of the signals z;, z; and z; is defined as Vizjk =

&{(zi — 17)(zj — 17)(zx — )} and the fourth-order cumulant of
the signals z;, z;, z; and z; is defined as szl =&{(zi —u)(z; —
13) (zk — W) (21 — 1p) } — 07,0 — 6,6, — 0,07 All the indices
go from 1 to N, as all the mdlces will do in the rest of the paper,

unless otherwise stated. Substltutlng the expression (1) in the three
previous definitions of o7 5% yfj . and ikl and taking into account the

independence between the elements of v, between the elements of
s and between x and v, these three functions are computed as:
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where 7, o; j, ik and Ki);'kl are the mean, covariance, third- and

fourth-order cumulants, respectively, of the components of x spec-
ified in the subindices; all the sums go from 1 to N, as will do
in the rest of the paper unless otherwise stated; for any arbitrary
functions f;;, dependent on the indices 7, j and &, and g; jk;, de-

pendent on the indices #, j, k and /, it is defined | fijx];jx = f,jk +

fjkl +.fk1]a I_gljliljkl = Sijki +gjkll +gkllj +gll]k and ’—gljkl.lljkl =
8ijkl + &ikjl + &i jk + &jkil + &jiik + &kiij> and the rest of the parame-
ters in (2) are:
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where &7, 7} and o} are the kurtosis, skewness and variance of v;;
k{ and ¥’ are the kurtosis and skewness of s;; and for an arbitrary

7 (430 o+ (1))

function f;;, dependent on the indices i and j, it is defined | £;;];; £
Jfij+ fji- These parameters are unknown in the problem, since they
depend on the mixing matrix and the sources and the problem is
blind.

3. MULTIPLICATIVE ICA METHOD (MICA)

ICA searches for the linear transformation whose output is as inde-
pendent as possible. If the data follow the ICA model, the result is
the inverse of the mixing matrix, which is called the unmixing ma-
trix and is the goal of all ICA methods. The most usual measures
of the independence in the different ICA methods are the mutual
information (MI), the negentropy and the cumulants. In the case
of MICA model, none linear transformation of the noisy data can
produce independent output [?], but the output after the application
of the unmixing matrix possesses a statistical structure that can be
used to find this matrix. Specifically, the cumulants of the output
y = Bz, with B the unmixing matrix, can be obtained from (2),
using that BA =1I. The result is:
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where Glyj, yiyjk and Kiyjkl are the covariance, third- and fourth-order
cumulant, respectively, of the correspondent components of y. The
arbitrary scaling factor associated with ICA problems appears also
in the MICA model, due to the part of the signal modelled as x =
As, and the normalization o] = 1 is set to eliminate it.

Then, the cumulants up to fourth-order of the output of a linear
transformation y = Bz of the noisy data possess the special struc-
ture (4) in the case B = A™!, so the unmixing matrix can be found
as the linear transformation which reproduces this structure. In or-
der to do this, the covariance third- and fourth-order cumulants of
y can be estimated from & G; J, yzj  and K‘Z ikl that are the covariance,

third- and fourth-order cumulants estlmated directly from the data
z through their definitions. This is done as:
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These estimated functions 0'1 o Vi ik and K});kl depend only on the

unmixing matrix B, while the functions o 0 yl);k and x ikl in (4) de-
pend on the unmixing matrix and also on the set of parameters in
(3), that, as the problem is blind, are unknown. This set of parame-
ters is highly dependent one on each other, so it would be interesting
to find a new set of independent parameters, reducing in this way the
dimension of the problem. This is possible taking into account the
unknown information. Respect to the sources, the mean, the vari-
ance, the third- and the fourth-order cumulants of their components
are unknown, but the variance of the sources is normalized to the
unity to avoid the scale indetermination. Respect to the noise, its
mean should to be one, so variance, third- and fourth-order cumu-
lants are unknown. Apart from data, the mixing and the unmixing
matrix are unknown, although they are related by the inversion op-
eration. Then, a set of independent parameters are:

K5, Bijtij=1,..N (6)

where 1; = \/6 Uy, wp = \/0' A;j and p; = 7//(o] )3/2 The
mean of the components of x can be estimated by the mean of the
noisy data z, since the noisy is one mean and independent of x,
so uf = p?. On the other side, the parameters @, B;; and 7); are
not independent, since @;; = (1;/1F)(B;;)~!. In other to avoid to
include the inversion in the method, which is really problematic in
posterior minimization, these parameters are considered indepen-
dent and the relation between them will be taken account later in
the cost function. So the total number of independent parameters is
Ni = N(2N +5), and the parameters (3) (and with them the func-
tions in (4)), can be expressed as function of (6). The explicit rela-
tion is omitted for space reason.

Then, the estimated functions (5) will be equal to the functions
(4) when B = A~ and the rest of the parameters in (6) take their
theoretical values, which will be call the correct solution. To mea-
sure how well the structure is reproduced for a set of parameters, a
cost function J can be built as:
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with the definitions in (4) and (5). The first sum in the cost function
is included to take into account the relation between the parameters
Bi;, @;j and m;. This function is formed by N, = N(N+1)/2((N +
2)/3(1 + (N +3)/4)) + N? terms, is function on the N; parame-
ters (6) and will be zero in the correct solution. This kind of cost
function has been widely used in cumulant matching in blind equal-
ization and channel estimation and is similar to the one used in [?].



Then, the problem is reduced to find the value of the parameters
{¢1,Mi, 0i},p1, 7,5, Bij}i j=1,..n that minimizes the cost function
(7), which means a problem of non-linear minimization of J. This is
usually solved in the ICA bibliography by the steepest descendant
method, such that, if the parameters are grouped in a N; x 1 vector
b with components equal to the different parameters, the vector of
unknowns is obtained in the step k as b(k) = b(k—1) — uVyJ,
where Vy,J is the gradient or the natural gradient (depending on the
method) of the function J respect to the parameters, and u is the
learning ration that control the size of each step. Only the gradient
of the cost function and the starting points are necessary to finish
the method. The gradient is obtained taking the derivative in the
definition (7), using (4), (5) and the relation between the parameters
(3) and (6). The result of this process is the expression of Vy,J, but
it has to be omitted for space reasons. With the gradient, the method
only needs the starting point to be finished.

However, the structure of J is much complicate that in the stan-
dard ICA case or in [?], and the steepest descendant method is too
slow in the convergence. The use of other non-linear optimiza-
tion methods have been tested and the one with better results is
the quasi-Newton method of BFGS (Broyden-Fletcher-Goldfard-
Shanno), where the parameters are obtained in the step £+ 1 as

b(k+1) = b(k) -k (OH(K)Vi,J ®)

where the matrix H(k) is an estimation of the inverse of the Hessian
in the step &, obtained using the value of the parameters and the
gradient in the steps k and k— 1, and p (k) is the learning ratio in the
step k. The readers are referred to the bibliography for details about
BFGS method [?].

At this stage, only the initialization is needed to finish the
method. If the cost function is unimodal, any initial values will
lead to the correct solutions. However, in practice if the method
is applied with random initial values, it seldom reaches the correct
solution. Most of the methods of minimizing non-linear functions
only converge to the correct solution if the starting point is close
enough to it. If this is not so, the method can diverge, converge
to a spurious minimum or wander without reaching any solution.
So, suitable starting points close to the solution need to be specified
in order the method to convergence properly. To determine them,
the same approach than in [?] is used, i.e. the noise is supposed
small, so it is neglected in first approximation, except in the case of
the variance, that it is supposed known or estimated. So, the start-
ing point for the parameters {¢;,p;}; j—1,.. v is zero. On the other
hand, there is no previous information about the value of B, and it
is necessary to resort to a standard ICA method to find the starting
point. This is not a problem, because the intention of this paper is
not find an independent way to solve the problem, rather try to im-
prove the results of the standard ICA methods in the MICA model.
Then, the starting point for the unmixing matrix, B, is the solution
of a standard ICA method. With this value, the starting points of ¥}

and « are chosen as (7;)° and (&;;)°, respectively, where they are
the estimated skewness and kurtosis of the components of y = B’z
obtained using (5). With an estimation of the variance of the mul-
tiplicative noise 6, the starting point of 7; is the one given by its
definition and the fact that p¥ = u?, so nd = /6 7. Finally, the
starting point of @j; is a)l-oj = \/(3'IV(BO);j1. The estimation of the
variance of the noise can be obtained from a uniform region in the
noisy data, as a uniform patch in an image, or from theoretical con-
siderations, but only a rough approximation is necessary. If this
previous estimation is not possible, the variance of the noise is con-
sidered zero, and the starting point of the parameters 1; and j; is
set zero. Both elections in the starting point lead to the convergence
of the minimization, but the first provides better results.

In summary, the FMICA method consists of the equations (??),
with the gradients of the cost function and the specified starting
points.

4. CONVERGENCE

The FMICA uses the gradient of the cost function in a point to find
the smallest value of the cost function in the neighbourhood of the
point, so the minimum is found in successive steps. This process
leads to the correct solution if it is a minimum of the cost func-
tion, there are not zero gradient directions passing through it and
the starting point is in the “attraction zone” of this correct solution.
The correct solution is, at least asymptotically, a zero of a positive
cost function, by construction, so it is a minimum. The problem of
the zero-gradient direction is a problem of local convergence, while
the determination of the attraction zone of the solution could be seen
as a problem of global convergence. The study of the global con-
vergence is a very difficult problem for practical cost functions and
is out of the scope of this paper. However, the local convergence
is possible to be studied. The process is the same that the follow
in [?], where it is studied through the Hessian of the cost function.
Specifically, a positive definite Hessian matrix in the correct solu-
tion insures that the method converges to it if the starting point is
close enough. It can be shown how the computation of the Hessian
matrix in the correct solution does not need of second derivatives,
so it is sufficient first derivatives, what makes it considerably eas-
ier. As the first derivatives have been computed in the gradients,
the Hessian matrix in the correct solution can be built and its sign
studied. The result of this process is the condition when the local
convergence is guaranteed, so it will find the correct solution with
adequate close starting points. It can be shown that the method con-
verge for any set of three or more independent sources, mixed with a
full rank matrix and contaminated by whatever multiplicative noise.
This means that there is no restriction in the PDF of the sources and
the noise, i.e. no limitation in their statistical nature. In the practice,
however, there is a limitation and it is that at most one of the sources
can be Gaussian. This limitation is due to the standard ICA methods
can not provide starting point close enough to the correct solution in
this situation. The explicit study has to be omitted because of lack
of space.

Then, in the practice, the FMICA method converges to the cor-
rect solution for three or more sources, if the starting points are close
enough of this solution. If a starting point is or not “close enough”
should be study based on the results.

5. RESULTS

In this section, the behaviour of the FMICA method is investigated
by simulations. It will be compared with a standard ICA method,
specifically the FastiCA method [?], for different levels of multi-
plicative noise. The sources are generated following some PDF,
with their variance equal to one, in order to satisfy the normalisa-
tion. These sources are mixed with a full rank square matrix, whose
elements are selected randomly in the interval [0 1). To complete
the multiplicative ICA model, the components of the multiplicative
noise are generated distributed following other PDF, always with
mean one. The standard deviation of the noise is varied in order to
test the behaviour of the FMICA method in different levels of noise.
The starting points are the ones specified in Section III. The elec-
tion of the PDFs of the sources and the noise is arbitrary, since the
method is independent on it.

The result of the FMICA is the matrix B, which should be
the unmixing matrix. The product of B and the mixing matrix is
called the global transformation. Although in the development of
the FMICA method the arbitrary scale factor has been eliminated
with a condition on the variances of the sources, there is, as in the
standard ICA model, also a sign and a permutation indetermination
in the model. So, if the MICA model is an exact representation of
the data and the functions in (5) are perfectly estimated, the inverse
of the mixing matrix is not the only one that reproduces the struc-
ture (4) in the second-, third- and fourth-order statistics, but also
all permuted sign-switched versions of this matrix does. Thus, in a
perfect estimation, the global transformation should be BA = PS,
where P is a permutation matrix and S is a diagonal matrix with its
diagonal elements equal to one or minus one. A parameter d is de-
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Figure 1: Mean of d as function of st for a linear mixture of three
uniform sources, contaminated by multiplicative Gaussian noise.
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Figure 2: Mean of d as function of st for a linear mixture of four
truncated rational sources, contaminated by multiplicative uniform
noise.

fined as the minimum distance from the global transformation BA
to the identity or any permuted sign-switched version of the identity
[?]. The distance is measured as the Frobenius norm of the differ-
ence and this parameter will be used to measure the performance of
the methods. Specifically:

d= gisn{lzj, (BA-PS);)*} ©)

where the minimum is taken over all possible permutations and sign
changes. The result of the method is the unmixing matrix B, and a
parameter d is defined to measure how close it is to the inverse of
the mixing matrix.

In Figures 1 and 2, the values of the parameter d for the Fas-
tICA method and the MICA method as function of the standard
deviation of the speckle noise, st, are presented. The Figure 1 cor-
responds with three sources, uniformily distributed in the interval
[0 a;), and contaminated by multiplicative Gaussian noise. The Fig-
ure 2 corresponds with four signals generated generated by taking

the exponential of N uniform distributed signals in the interval [0 a;)
and contaminated with multiplicative uniform noise. The value of
a; is taken different in each one of the N sources. The number of
data in the signals is 100,000. The shown d are the mean of 10 re-
alizations. The MICA method is stopped when a fixed number of
iterations have been completed or when the difference in the value
of the cost function between ten consecutive steps is smaller than a
threshold.

It can be seen that the results obtained with the different MICA
method are always better than the FastiCA method for both the
number of signals and the range of noise studied. This compari-
son has been done for different mixtures, various number of sources
(always greater than three) and for a wide range of sz. The results
obtained always have this behaviour.

6. CONCLUSIONS

In this paper a new method, the FMICA method, that obtains the un-
mixing matrix from a linear mixture of independent sources in the
presence of multiplicative noise has been developed. The method
tries to overcome the limitations of the ICA methods for this kind
of signal. In order to do this, the FMICA method does not find a lin-
ear transformation whose outputs possess null cross-correlation and
null higher-order cross-cumulants, as ICA does, but searches for a
specific structure in the second-, third- and fourth-order statistic of
the outputs that takes into account the existence of multiplicative
noise in the data. The FMICA method has been tested for different
sources and noises and its results improve clearly with respect to the
ones obtained by standard ICA methods for linear mixture of inde-
pendent sources contaminated with multiplicative noise. The con-
vergence of the method has been also studied, showing that there is
not restriction in the statistical nature of the sources or of the noise.
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