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ABSTRACT

A reduced complexity normalized least-mean-square
(NLMS) algorithm is presented for blind linear adaptive
multiuser detection in synchronous direct-sequence CDMA
systems. Selective partial updating is employed to reduce
the computational complexity of the NLMS algorithm. The
basic idea behind selective partial updating is to update
only a small number of the adaptive filter coefficients at
each iteration as identified by a selection criterion. It is
shown that the reduced complexity selective partial update
NLMS algorithm not only performs almost as well as the
full-update NLMS algorithm in general, but in some cases it
is also capable of outperforming the full-update algorithm.
The performance of the proposed selective partial update
algorithm is illustrated with computer simulations.

1. INTRODUCTION

Code division multiple access (CDMA) using direct sequence
spreading is known to have certain advantages over time di-
vision multiple access (TDMA) and frequency division mul-
tiple access (FDMA) in terms of capacity, voice quality, cost
effectiveness and handover performance. To make the most
of these advantages, the CDMA systems must perform joint
detection of multiple users. While optimal multiuser detec-
tion techniques are available [1], their computational com-
plexity is prohibitive even for a moderate number of users.
Adaptive suboptimal multiuser detection techniques provide
a low-complexity solution with good performance. The adap-
tive nature of the detector allows the CDMA receiver to keep
track of changes in the system such as those caused by users
entering or exiting the system.

Several papers have been published in the literature on
adaptive multiuser detection. The linear minimum mean-
square-error (MMSE) detector that was proposed in [2, 3]
can be used in training or blind mode. In blind mode, only
the prior knowledge of the signatures and timing of the users
to be detected is required by the receiver. The least-mean-
square (LMS) algorithm for blind MMSE detection offers a
simple, low-complexity solution to multiuser detection.

The concept of partial updating has been studied exten-
sively (see e.g. [4, 5] and the references therein). In this paper
we develop a new reduced complexity LMS blind multiuser
detection algorithm employing selective partial updates. We
show by simulation that in the context of blind adaptive
multiuser detection, selective partial updating is capable of
improving the performance of the LMS blind multiuser de-
tection algorithm while reducing its complexity significantly.

2. BLIND ADAPTIVE LINEAR MULTIUSER
DETECTION

The synchronous DS-CDMA signal model for a K-user sys-
tem using binary phase shift keying (BPSK) modulation is

r(i) =

KX
k=1

Akbk(i)sk + n(i) (1)

where r(i) is the received signal vector at the ith symbol
interval

r(i) = [r0(i), r1(i), . . . , rN−1(i)]
T

N is the processing gain, Ak is the received complex signal
amplitude for user k, bk(i) = ±1 is the ith symbol of user
k, sk is the normalized signature (scrambling code) of user
k (‖sk‖ = 1)

sk =
1√
N

[c0,k, c1,k, . . . , cN−1,k]T

and n(i) ∼ Nc(0, σ2
IN) is the additive complex Gaussian

channel noise. The signature signal sk can be an m-sequence
or Gold sequence with period N . The latter has better cross-
correlation properties [6].

A linear receiver aims to detect individual users from
the received signal r(i) by means of linear filtering. A linear
receiver for one of the users, say user l (1 ≤ l ≤ K), has the
following form [7]

zl(i) = w
H
l r(i)

b̂l(i) = sign(ℜ{A∗
l zl(i)})

where wl is the linear receiver, zl(i) is the linear receiver

output and b̂l(i) is the detected symbol. The output of the
linear receiver can be written as

zl(i) = Al(w
H
l sl)bl(i)| {z }

desired signal

+
X

1≤k≤K
k 6=l

Ak(wH
l sk)bk(i)| {z }

multiple access interference

+ w
H
l n(i)| {z }
noise

.

(2)

An important performance measure of multiuser detection
is the signal-to-interference-plus-noise ratio (SINR) at the
receiver output:

SINR(wl) =
|Al(w

H
l sl)|2P

1≤k≤K
k 6=l

|Ak(wH
l sk)|2 + σ2‖wl‖2

. (3)



It is desirable to carry out multiuser detection in a blind
mode (i.e., without the knowledge of other users’ signatures)
in order to save bandwidth especially in the downlink where
the mobile users may not be aware of dynamic changes in
the user traffic. A simple blind multiuser detection method
can be formulated based on the solution of the following
constrained optimization problem:

ml = arg min
w∈C

N

w
H

sl=1

E{‖wH
r(i)‖2} (4)

which is referred to as minimum-output-energy (MOE) de-
tection [3]. In (4) ml is the blind linear receiver that demod-
ulates user l and is given by

ml = E−1{r(i)rH(i)}sl (5)

which is termed the direct matrix inversion blind linear
MMSE detector.

Decomposing ml into orthogonal components

ml = sl + P lxl, sl ⊥ P lxl

with a projection matrix that is orthogonal to sl

P l = IN − sls
H
l

such that P lml = P lxl, (4) can be re-written as an uncon-
strained optimization problem [7]:

ml = sl + P l arg min
x∈CN

E{‖(sl + P lx)H
r(i)‖2}. (6)

The LMS algorithm solving (6) is given by [7]

xl(i + 1) = xl(i) − µLMS

�
(sl + P lxl(i))

H
r(i)

�∗
P lr(i) (7a)

zl(i) = (sl + P lxl(i))
H

r(i) (7b)

b̂l(i) = sign(ℜ{A∗
l zl(i)}) (7c)

where µLMS is the LMS step-size.

3. BLIND MULTIUSER NLMS ALGORITHM

For the sake of simplicity, we will assume that the Ak and
n(i) are real-valued, and Ak > 0. The solution of the fol-
lowing constrained optimization problem then gives the nor-
malized LMS (NLMS) algorithm for blind adaptive multiuser
detection:

min
(sl+P lxl(i+1))T r(i)=0

‖xl(i + 1) − xl(i)‖2. (8)

This optimization problem aims to modify xl(i) in a minimal
fashion so that the new vector xl(i+1) minimizes the output
energy for the current input. Note that the constraint of the
optimization problem given by (sl + P lxl(i + 1))T

r(i) = 0
can never be satisfied, which leads to a compromise solution
that brings (sl + P lxl(i + 1))T

r(i) close to zero as in MOE
detection while minimizing the change in xl(i). The above
optimization problem will provide the basis for the selective
partial update algorithm derived in the next section.

Using a Lagrange multiplier, the cost function to be min-
imized can be written as

J(xl(i + 1)) = (xl(i + 1) − xl(i))
T (xl(i + 1) − xl(i))

+ λ(sl + P lxl(i + 1))T
r(i). (9)

Taking the gradient with respect to xl(i + 1) and λ and
setting it equal to zero gives

∂J(xl(i + 1))

∂xl(i + 1)
= 2xl(i + 1) − 2xl(i) + λP lr(i) = 0 (10a)

∂J(xl(i + 1))

∂λ
= (sl + P lxl(i + 1))T

r(i) = 0. (10b)

Solving (10a) for xl(i + 1), we obtain

xl(i + 1) = xl(i) − λ

2
P lr(i). (11)

Substituting this into (10b) gives�
sl + P lxl(i) − λ

2
P lr(i)

�T

r(i) = 0 (12a)

(sl + P lxl(i))
T
r(i) − λ

2
r

T (i)P lr(i) = 0 (12b)

λ

2
=

(sl + P lxl(i))
T
r(i)

rT (i)P lr(i)
. (12c)

Note that for real Ak and sk, P
T
l = P l and P

2
l = P l. Using

(11) and (12c), we obtain the following NLMS algorithm:

xl(i + 1) = xl(i) − µNLMS
zl(i)P lr(i)

rT (i)P lr(i)
(13)

where µNLMS is a step-size. The only difference between the
LMS and NLMS algorithms is that the NLMS has a nor-
malized step-size with normalization factor r

T (i)P lr(i) =
‖P lr(i)‖2.

4. SELECTIVE PARTIAL UPDATING

To apply selective partial updating, segment xl(i) and P l

into B equal-size sub-blocks:

xl(i) =

264xl,1(i)
...

xl,B(i)

375 , P l = [P l,1 · · · P l,B ] . (14)

The selective partial update (SPU) version of the NLMS al-
gorithm is given by the solution of the following constrained
optimization problem:

min
1≤j≤B

min
(sl+P lxl(i+1))T r(i)=0

‖xl,j(i + 1) − xl,j(i)‖2. (15)

The above optimization problem is motivated by the earlier
work on selective partial updating [5]. For a given sub-block
j, the cost function to be minimized is

J(xl,j(i + 1)) = ‖xl,j(i + 1) − xl,j(i)‖2

+ λ(sl + P lxl(i + 1))T
r(i). (16)

Taking the gradient with respect to xl,j(i + 1) and λ and
setting it to zero gives

∂J(xl,j(i + 1))

∂xl,j(i + 1)
= 2xl,j(i + 1) − 2xl,j(i)

+ λP
T
l,jr(i) = 0 (17a)

∂J(xl,j(i + 1))

∂λ
= (sl + P lxl(i + 1))T

r(i) = 0. (17b)



Solving (17a) for xl,j(i + 1), we get

xl,j(i + 1) = xl,j(i) − λ

2
P

T
l,jr(i). (18)

Substituting this into (17b) gives�
sl + P lxl(i) − λ

2
P l,jP

T
l,jr(i)

�T

r(i) = 0 (19a)

(sl + P lxl(i))
T
r(i) − λ

2
r

T (i)P l,jP
T
l,jr(i) = 0 (19b)

λ

2
=

(sl + P lxl(i))
T
r(i)

rT (i)P l,jP
T
l,jr(i)

. (19c)

Using (18) and (19c), we obtain the following adaptation
algorithm:

xl,j(i+1) = xl,j(i)−µSPU
(sl + P lxl(i))

T
r(i)

‖P T
l,jr(i)‖2

P
T
l,jr(i) (20)

where µSPU is a step-size.
The sub-block that has the minimum update among the

B sub-blocks is

j = arg min
1≤m≤B

 (sl + P lxl(i))
T
r(i)

rT (i)P l,mP
T
l,mr(i)

P
T
l,mr(i)

2

(21a)

= arg min
1≤m≤B

1

‖P T
l,mr(i)‖2

. (21b)

Thus, the sub-block selected for update at the ith iteration
is simply given by

j = arg max
1≤m≤B

‖P T
l,mr(i)‖2. (22)

It was shown in [8] that replacing the normalization fac-
tor ‖P T

l,jr(i)‖2 in (20) with ‖P lr(i)‖2 maximizes the con-
vergence speed. Thus, the SPU-NLMS algorithm for blind
multiuser detection is given by

xl,j(i + 1) = xl,j(i) − µSPU

zl(i)P
T
l,jr(i)

‖P lr(i)‖2
,

j = arg max
1≤m≤B

‖P T
l,mr(i)‖2.

(23)

It is interesting to note that for B = N the coefficient
sub-blocks become individual coefficients. This is the pre-
ferred way of selective partial updating since it results in the
fastest convergence for partial updates. The case of B = 1
is equivalent to the full-update NLMS. It is also possible to
consider multiple sub-blocks for updating.

The computational complexity of the full-update NLMS
algorithm in (13) is 3N multiplications for computing the
output zl(i), and 4N multiplications and one division for
the update term per iteration. The SPU-NLMS algorithm
in (23) has the same complexity as the NLMS for computing
zl(i), but requires 2N(1 + 1/B) ≈ 2N multiplications and
one division for the update term per iteration.

5. SEQUENTIAL PARTIAL UPDATING

A zero overhead alternative to selective partial updating is
sequential partial updating [9]. Sequential partial updating
does not select the coefficient sub-block to be updated in
an “intelligent” way. It simply updates the sub-blocks in
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Figure 1: Comparison of LMS and NLMS algorithms.

a sequential manner. The sequential-partial-update NLMS
algorithm can be defined by simply replacing the selection
criterion in (22) with

j = {k + 1 : (i − k) mod B = 0, 0 ≤ k ≤ B − 1}. (24)

The convergence speed of a sequential-partial-update algo-
rithm is 1/Bth that of the full-update algorithm, which is
often far too slow.

6. SIMULATION STUDIES

In the simulations the signature sequences are short codes
obtained from randomly selected m-sequences with period
N = 63. The system has K = 10 users. The user to be
detected is user 1 (i.e., l = 1). The system has six 10 dB
multiple access interferences (MAIs) and three 20 dB MAIs,
i.e., A2

k/A2
1 = 10 for k = 2, . . . , 7, and A2

k/A2
1 = 100 for

k = 8, 9, 10. The desired signal to ambient noise ratio is
20 dB. Fig. 1 shows the SINR performance of the LMS
and NLMS algorithms for step-sizes µLMS = 4.5 × 10−4 and
µNLMS = 0.15 averaged over 100 simulations. The blind LMS
and NLMS multiuser detection algorithms are observed to
have almost identical performance. In the case of trained
multiuser detection the NLMS algorithm is known to con-
verge faster than the LMS algorithm. For blind multiuser
detection, this performance advantage appears to vanish.

Simulations were carried out to compare the performance
of the full-update NLMS and SPU-NLMS algorithms for
processing gains N = 63 and N = 127. The number of sub-
blocks was set equal to the number of coefficients (B = N).
This means that only one coefficient out of N is updated at
each iteration. This is normally expected to yield the worst-
case performance for partial updating. However it was ob-
served that the SPU-NLMS algorithm not only performed as
well as the full-update NLMS algorithm, but it also outper-
formed the full-update NLMS algorithm in some cases. The
simulation results are shown in Figs. 2–4.

The convergence performance of the sequential-partial-
update NLMS (Seq-NLMS) algorithm is compared with that
of the SPU-NLMS in Fig. 5. Both algorithms update one
out of 63 coefficients. The superior performance of selective
partial updating is clearly visible.

7. CONCLUSION

A complexity reduction method was proposed for blind lin-
ear adaptive multiuser detection algorithms based on selec-
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Figure 2: Comparison of full-update NLMS and SPU-NLMS
for the same steady-state SINR.

0 500 1000 1500 2000 2500 3000 3500
−4

−2

0

2

4

6

8

10

12

14

Iteration

S
IN

R
 (d

B
)

m−sequence (N=63)

NLMS
SPU−NLMS

Figure 3: Comparison of full-update NLMS and SPU-NLMS
for the same initial converge rate.

tive partial updating. Contrary to initial expectation, no
significant performance loss was observed even when only
one filter coefficient was updated out of N . In some cases,
the convergence performance even improved compared with
full updating. Future work will investigate the observed per-
formance improvement by resorting to averaging analysis of
the LMS cost function.
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