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ABSTRACT
Detection of signal transients, or spikes, is a suitable

application of time-frequency signal processing. One such
time-frequency method for spike detection is matching pur-
suit, incorporating a redundant time-frequency dictionary.
However, problems arise when using matching pursuit to de-
tect repetitive rhythmical spiking, which is a common char-
acteristic in an application such as newborn EEG seizure de-
tection. In this paper we investigate the ability of match-
ing pursuit to detect spikes both in synthetic signals and
real newborn EEG seizure. It is shown that repetitive spikes
may be recognised by matching pursuit as harmonic patterns
rather than individual spikes. Consequently, these spikes
cannot be located in the matching pursuit time-frequency do-
main representation. However, we have found that the re-
lationship between the length of a repetitive spike sequence
and interval between successive spikes in the sequence plays
a pivotal role in the ability of matching pursuit to detect these
spikes.

1. INTRODUCTION

Spike detection has found applications in many areas such as
mechanical and biomedical engineering. In analysing brain
functioning using the electroencephalogram (EEG), some
types of abnormality, such as newborn EEG seizure, are char-
acterised by spikes [1].

Matching pursuit (MP) decomposition using a time-
frequency (TF) dictionary is a suitable tool for detecting
spikes [2]. MP provides a signal representation using wave-
forms (atoms) selected from a redundant collection of atoms,
referred to as a dictionary [3].

Unlike the unique representation from an orthogonal ba-
sis, multiple signal representations are possible when incor-
porating a redundant dictionary. However, using a redundant
TF dictionary, MP can provide an adaptive TF representa-
tion, which can provide high TF resolution of signal compo-
nents [3].

The number of spikes in EEG and distance between suc-
cessive spikes can be used to detect EEG seizure [4]. The
accuracy of a spike detection technique can be vital in de-
tecting EEG seizures. In [2], the author proposed a new TF
based spike detection technique using MP. It was reported
that this technique has a better performance in detecting EEG
spikes compared to the other existing methods. We have ob-
served that the MP decomposition technique is very capable
of detecting single spikes. However, in the case of successive
spikes, which are a characteristic of newborn EEG seizure,
the MP algorithm may consider these as harmonic patterns
[5]. Consequently, these spikes cannot be located in the MP
TF domain representation.

In this paper, we investigate the ability of the MP algo-
rithm in detecting spikes. Using synthetic signals, we ini-
tially explain the mechanics of the MP algorithm. The results
and observations from the synthetic examples, which indi-
cate the requirements for MP to detect individual spikes from
a repetitive spike sequence, are then applied to real newborn
EEG seizure.

2. MATCHING PURSUIT

The MP atomic decomposition algorithm, using a redundant
dictionary Φ = (φγ )γ∈Γ, was introduced as a method of pro-
viding a signal approximation using a linear superposition of
atoms from Φ [3]. The subscript γ refers to a parameter or
multi-index parameter which uniquely defines each individ-
ual atom.

An approximation of a signal x using m atoms can be
given as

x̂ =
m−1

∑
i=0

αγiφγi (1)

where αγi is the atom coefficient. The approximation error,
also referred to as the residual, is Rmx = x − x̂ [3], where
R0x = x.

The MP algorithm is an iterative process where the atom
selected at each iteration is the one for which the projection
of the residual is largest. That is, for iteration i+1 the index
γ i associated with the atom φγi is determined by

γ i = arg{sup
γ∈Γ

〈Rix,φγ 〉} (2)

Using (2), the MP decomposition of signal x is given as

x =
m−1

∑
i=0

〈Rix,φγi〉φγi +Rmx (3)

where the inner product, 〈Rix,φγi〉, is the coefficient value,
αγi, associated with the atom φγi. The dictionary is normal-
ized so that the `2 norm of each atom is ||φγ ||2 = 1. This
normalization removes any magnitude bias in the projection
of the residual vector Rix onto any atom vector φγ .

A TF representation can then be obtained by the summa-
tion of the estimated TF contribution of each atom selected
in the decomposition. A method of estimating the TF contri-
bution is the Wigner-Ville distribution (WVD) [3] such that
a TF representation can be obtained as

E(t, f ) =
m−1

∑
i=0

|〈Rix,φγi〉|2WVDφγi(t, f )



3. SYNTHETIC SPIKE SEQUENCE
REPRESENTATION USING MP

3.1 Fourier/Spike dictionary
There are a variety of TF dictionaries that have been previ-
ously used with the MP algorithm for signal decomposition.
In our analysis of MP for detecting spikes we first consider a
basic dictionary Φ = Φ1∪Φ2, [6], where Φ1 is the orthonor-
mal spike basis

φ1,τ(t) = 1{t=τ}, τ = 0,1, . . . ,N −1

and Φ2 is the orthonormal Fourier basis

φ2,ξ (t) =
1√
N

e j2πξ t/N , ξ = 0,1, . . . ,N −1

For this dictionary the atom indexer γ is the vector [a,b]
where a indicates whether it is a spike or Fourier atom and b
is the index for that atom. Using this dictionary, spikes can
either be represented with Fourier atoms, shown as horizon-
tal lines in a TF plot (see Figure 1(a)), or spike atoms, shown
as vertical lines in a TF plot (see Figure 1(b)).

The synthetic signals to be analysed in this section are
spike trains, represented as

III
T
N(n) =

{

1 : n = l ·T, l = 0,1, . . . ,Nt −1
0 : else (4)

where N = T ·Nt , with period T samples between non-zero
elements (spikes) and Nt number of spikes.

The ability of MP to detect periodic spikes using the
Fourier/Spike dictionary can be better understood using the
uncertainty principle for discrete signals defined in [7]. This
principles states that for a discrete signal, x(n), of length N
and its discrete Fourier transform (DFT), X(k), that

Nt ·N f ≥ N (5)

where Nt is the number of non-zero points of x(n) and N f is
the number of non-zero points of X(k). It should be noted
that the inequality of (5) does not indicate where x(n) and
X(k) are non-zero: these may be intervals or any other sets
[7] (i.e. this differs from the idea of bandwidth and duration
for the Heisenberg uncertainty principle).

The periodic spike train III
T
N defined in (4) is a special

signal in relation to this uncertainty principle as it provides
the minimum uncertainty [7]. Also of importance is the DFT
of x(n) = III

T
N which is X(k) = K ·IIIΩ

N (k). This Fourier se-
quence X(k) has N f non-zero points, the number of samples
between two non-zero points is Ω = N/N f , and [7]

K =
√

Nt/N f (6)

Using the discrete uncertainty principle in (5), we can
show that MP will represent III

T
N with spike atoms only

if T >
√

N and with Fourier atoms if T <
√

N [7]. If a
signal III

T
N has T >

√
N, then Nt <

√
N and according to

(5) N f > Nt . Using (6) we see that K < 1, and that in the
first MP iteration the spike atoms with coefficient of 1 from
the Fourier/Spike dictionary will contain more signal energy
than the Fourier atoms with coefficient K. Therefore a spike
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Figure 1: Time-frequency representations of synthetic spike
trains with spike intervals of 8 samples and signal lengths of
(a) 128 samples and (b) 32 samples

atom is chosen in the first iteration and the residual sequence
becomes

R1x =

{

0 : n = 0,1, . . . ,T −1
III

T
N−T (n−T) : else (7)

For the sequence R1x in (7), there are only Nt1 = Nt − 1
non-zero points. Therefore the number of non-zero points for
the DFT is N f 1 > N f using (5). Also the DFT of R1x has N f
maximums. This means that in the second MP iteration, the
spike atoms with coefficient 1 will contain more energy than
any Fourier atoms as the maximum coefficient will be less
than K. This means that a spike atom will be selected in the
second iteration and MP will continue to select spike atoms
in this way.

If x = III
T
N has T <

√
N, then using (5) Nt > N f and

from (6) K > 1. This infers that any Fourier atom from the
Fourier/spike dictionary with a non-zero coefficient will rep-
resent more signal energy than any spike atom as the max-
imum coefficient will be 1. Therefore, MP will select a
Fourier atom in its first iteration. Removing the selected
Fourier atom, we are left with a residual R1x which has a



Time−Frequency Plot 

No
rm

al
ize

d 
Fr

eq
ue

nc
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450 500
Time (samples)

Time−Frequency Plot 

No
rm

al
ize

d 
Fr

eq
ue

nc
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250
Time (samples)

(a)

(b)

Figure 2: Time-frequency representations of synthetic spike
trains with spike intervals of 32 samples and signal lengths
of (a) 512 samples and (b) 256 samples

discrete Fourier transform

DFT{R1x} =

{

0 : k = 0,1, . . . , f −1
K · IIIT

N− f (k− f ) : else
(8)

It is known that if the DFT{x(n)} = X(k), then according to
the duality property, DFT{X(n)} = x̃(−k), where x̃(−k) is
x(k) index reversed [8]. Using the duality property and the
results of the previous case when T >

√
N, we find that MP

continues to select Fourier atoms to represent the synthetic
spike train.

This result is demonstrated in the TF representations in
Figure 1. It can be seen in Figure 1(a) that MP cannot rep-
resent individual spikes with spike atoms as a result of the
signal, III

8
128, having T <

√
N. However, when a smaller

epoch of the signal, III
8
128, is taken, for example III

8
32 in

Figure 1(b), the spikes are represented with spike atoms due
to the spike interval being T >

√
N. This initial demonstra-

tion indicates that for this dictionary there is a strict relation-
ship between the period and signal length for MP to detect
the periodic spikes.

3.2 Gabor Dictionary
The above results are a start in the assessment of MP for
detecting periodic spikes. However, the TF dictionary used
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Figure 3: Time-frequency representations of real EEG spike
sequence

is very basic and not often used in practice. The most fre-
quently used redundant TF dictionary used with MP is a Ga-
bor dictionary, ΦG, and was initially proposed for MP [3].
The Gabor dictionary consists of translated (µ), modulated
(ξ ) and dilated (s) Gaussian windows g(t) such that the Ga-
bor atoms are

gγ(t) =
1√
s

g
(

t −µ
s

)

e jξ t

where γ = [s,µ ,ξ ] and γ ∈ R
+×R

2

Using the Gabor dictionary we find similar results to that
for the Fourier/Spike dictionary occurs for the decomposition
of repetitive spike sequences. Figure 2(a) shows a TF repre-
sentation of a spike sequence signal with length 512 sam-
ples and periodic spiking activity. The spikes have a duration
of 3 samples and are separated by 32 samples. The spike
sequence also has white Gaussian noise added to it with a
signal to noise ratio (SNR) of 10dB. From Figure 2(a) we
can see that a majority of the spikes are not represented with
spike atoms, which are shown in the TF representation as
vertical lines. The few that are represented result from the
end effects of the MP decomposition.

In Figure 2(b), we have taken an epoch of the signal in
Figure 2(a) using the first 256 samples. In the TF representa-
tion of Figure 2(b) it is clear that MP can represent the signal
spikes with spike atoms, allowing for spike detection. This
again indicates the ability of MP to detect repetitive spikes is
highly dependent on the relationship between the period of
successive spikes and the signal length.

4. NEWBORN EEG SPIKE SEQUENCE
REPRESENTATION USING MP

The newborn EEG seizure has been previously characterized
in the time domain signal as displaying sharp repetitive wave-
forms [9]. Focal trains of sharp repetitive waveforms are a
major form of ictal discharge in the newborn [10]. Spike
events have been defined in [11] as having a time duration of
between 20-70msec with significant amplitude. Sharp waves
have duration that is slightly longer than spike waveforms.

An example of newborn EEG seizure containing repeti-
tive spikes is shown in Figure 3. The MP decomposition of
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Figure 4: Time-frequency representation of an epoch at the
start of the real EEG spike sequence in Figure 3
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Figure 5: Time-frequency representation of an epoch at the
end of the real EEG spike sequence in Figure 3

the EEG signal, of length 1024 samples, was performed with
MP iterations continuing until the energy in the approxima-
tion error Rix was less than 5% of the energy in the original
signal x. The TF representation using MP is also presented
in Figure 3. From the TF representation we can see that MP
fails to represent the repetitive spikes with vertical line pat-
terns which are representative of spike waveforms. Instead,
MP TF representation only shows the harmonic relationship
between EEG seizure spikes, illustrated by horizontal lines.

The spike sequence in Figure 3 contains 33 individual
spike events. Of these individual spike events, the MP TF
representation only shows 4 clear spike events, indicated by
vertical lines in the TF representation. However, the results
of the previous section demonstrate that MP may be able to
detect the repetitive spikes if smaller epochs are chosen.

Figures 4 and 5 are epochs of length 250 samples taken
at the start and end of the signal shown in Figure 3. The TF
representations in Figures 4 and 5 clearly illustrate the suc-
cessive spike events, which are displayed with vertical lines.
There is a total of 17 spikes in these two epochs for which
MP clearly indicates 16. This is a dramatic improvement in
the true spike detection rate of the same signal.

5. CONCLUSION

The detection of transient signals or spikes is an important
application in signal processing, especially in the newborn
EEG where abnormal brain functioning can be represented
as spikes in the EEG. Detection of spikes in EEG, which may
characterise seizures, is significant. In this paper we have in-
vestigated the ability of MP in detecting repetitive spike se-
quences using synthetic and real signals. We have shown that
the ability of MP to detect repetitive spikes depends signifi-
cantly on the relationship between signal length and the in-
terval between successive spikes. Generally, we find shorter
epochs are better for spike detection. Incorporating this find-
ing can increase the ability of MP in detecting spikes.
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