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ABSTRACT

The problem of estimating second-order statistical functions of
generalized almost-cyclostationary (GACS) processes is addressed.
The class of such nonstationary processes includes, as a special
case, the almost-cyclostationary (ACS) processes. ACS processes
filtered by Doppler channels and communications signals with time-
varying parameters are further examples. It is shown that, for
GACS processes, the cyclic correlogram is an asymptotically Nor-
mal mean-square consistent estimator of the cyclic autocorrelation
function. Thus, well-known results for ACS processes can be ob-
tained as a special case of the results of this paper.

1. INTRODUCTION

In the last two decades, a big effort was devoted to analysis and
exploitation of the properties of the almost-cyclostationary (ACS)
processes. In fact, almost-all modulated signals adopted in commu-
nications can be modelled as ACS [3], [16]. For ACS processes,
multivariate statistical functions are almost-periodic functions of
time and can be expressed by (generalized) Fourier series expan-
sions whose frequencies, referred to as cycle frequencies, do not
depend on the lag shifts of the processes.

More recently, wider classes of nonstationary processes have
been considered in [7]–[12]. In particular, in [7], the class of the
generalized almost-cyclostationary (GACS) processes has been in-
troduced and characterized. Processes belonging to this class ex-
hibit multivariate statistical functions that are almost-periodic func-
tions of time whose Fourier series expansions have coefficients and
frequencies, referred to as lag-dependent cycle frequencies, that can
depend on the lag shifts of the processes. The class of the GACS
processes includes, as a special case, the class of the ACS pro-
cesses. Moreover, chirp signals and several angle-modulated and
time-warped communication signals are GACS processes. In [8]
and [9], it is shown that several time variant channels of interest in
communications transform a transmitted ACS signal into a GACS
one. In particular, in [9] it is shown that the GACS model is appro-
priate to describe the output signal of Doppler channels when the
input signal is ACS and the product transmitted-signal-bandwidth
times data-record-length is not too small. Thus, the GACS model
turns out to be useful in modern mobile communication systems
where wider and wider bandwidths are required to get higher and
higher bit rates and, moreover, large data-record lengths are nec-
essary for blind channel identification techniques or detection al-
gorithms in highly noise- and interference-corrupted environments.
In [7], [8], and [9], it is also shown that communications signals
with slowly time-varying parameters, such as carrier frequency or
baud rate, should be modelled as GACS, rather than ACS, if the
data-record length is such that the parameter time variations can be
appreciated.

The autocorrelation function of GACS processes is completely
described by the cyclic autocorrelation function as a function of the
two variables cycle frequency and lag shift [11]. Such a function is
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defined analogously to the case of ACS processes, but is non zero
in a more than countable set of values of cycle frequency.

In this paper, the cyclic correlogram is proposed as an estima-
tor of the cyclic autocorrelation function of GACS processes. It is
shown that, for GACS stochastic processes satisfying some mix-
ing conditions expressed in terms of summability of their second-
and fourth-order cumulants, the cyclic correlogram, as a function
of the two variables lag shift and cycle frequency, is a mean-square
consistent and asymptotically Normal estimator of the cyclic auto-
correlation function. Furthermore, in the limit as the data-record
length approaches infinite, the region of the cycle-frequency lag-
shift plane where the cyclic correlogram is significantly different
form zero becomes a thin strip around the support curves of the
cyclic autocorrelation function, that is, around the lag-dependent
cycle frequency curves. Thus, the proved asymptotic Normality re-
sult can be used to establish statistical tests for presence of gener-
alized almost-cyclostationarity. Finally, it is shown that the well-
known result for ACS processes that the cyclic correlogram is a
mean-square consistent and asymptotically Normal estimator of the
cyclic autocorrelation function (see [1], [2], [4], [5], [6]) can be
obtained as a special case of the results established in this paper.

2. GACS STOCHASTIC PROCESSES

A finite-power complex-valued continuous-time stochastic process
x(t) is said second-order GACS in the wide sense [7], [8] if its auto-
correlation function is almost-periodic in t:

Rxx∗(t, t ) , E{x(t + t ) x∗(t)}
= å

a ∈At

Rxx∗(a , t ) e j2p a t (1)

where

Rxx∗(a , t ) , lim
T→¥

1
T

∫ T/2

−T/2
Rxx∗(t, t ) e− j2p a t dt (2)

is the cyclic autocorrelation function at cycle frequency a . More-
over,

At , {a ∈ R : Rxx∗(a , t ) 6= 0} (3)

is a countable set which, in general, depends on t .
Note that, even if the set At is always countable, the set

A ,
⋃

t ∈R

At (4)

is not necessarily countable. Thus, the class of the second-order
wide-sense GACS processes extends that of the wide-sense ACS
which are obtained as a special case of GACS processes when the
set A is countable [2].

A useful characterization of wide sense GACS processes can be
obtained by observing that the set At can be expressed as [7], [8]

At =
⋃

n∈I

{a ∈ R : a = a n(t )} (5)



where I is a countable set and the functions a n(t ), referred to as
lag dependent cycle frequencies, are such that, for each a and t ,
there exists at most one n ∈ I such that a = a n(t ). Thus, the auto-
correlation function Rxx∗(t, t ) of a second-order wide-sense GACS
process can be expressed as [7], [8]

Rxx∗(t, t ) = å
n∈I

R(n)
xx∗(t ) e j2p a n(t )t (6)

where the functions R(n)
xx∗(t ), referred to as generalized cyclic auto-

correlation functions, are defined as

R(n)
xx∗(t ) ,







lim
T→¥

1
T

∫ T/2

−T/2
Rxx∗(t, t ) e− j2p a n(t )t dt , t ∈ T

(n)

0 , t ∈ R−T
(n)

(7)

T
(n)

, {t ∈ R : a n(t ) is defined}
Note that, in (6) the sum ranges over a set not depending on t
as, on the contrary, it occurs in (1). Moreover, unlike the case of
second-order ACS processes, both coefficients and frequencies of
the Fourier series in (6) depend on the lag parameter t . Thus, the
wide-sense ACS processes are obtained as a special case of GACS
processes when the lag-dependent cycle frequencies are constant
with respect to t and, hence, are coincident with the cycle frequen-
cies [7].

In [7], [8], it is shown that, by properly defining the functions

R(n)
xx∗(t ) in the discontinuity points, the cyclic autocorrelation func-

tion and the generalized cyclic autocorrelation functions are related
by the relationship

Rxx∗(a , t ) = å
n∈I

R(n)
xx∗(t ) d a −a n(t ) (8)

where d g denotes Kronecker delta, that is, d g = 1 for g = 0 and
d g = 0 otherwise.

In the special case of ACS processes, the lag dependent cycle
frequencies are constant and coincident with the cycle frequencies,
only one term is present in the sum in (8) and, consequently, the
generalized cyclic autocorrelation functions are coincident with the
cyclic autocorrelation functions.

In Figure 1, the support in the (a , t ) plane of the cyclic au-
tocorrelation function Rxx∗(a , t ) is reported for (a) an ACS signal
and (b) a GACS signal. For an ACS signal, such a support is con-
stituted by lines parallel to the t axis in correspondence of the cycle
frequencies. For a GACS signal, the support is constituted by the
curves a = a n(t ), n ∈ I (see (8)).

Examples of GACS signals are nonuniformly sampled signals
[7] and modulated signals with sinusoidally varying carrier fre-
quency. The former can be expressed as

x(t) , w(t) å
k∈Z

d (t − kTp(t)) (9)

where d (·) denotes Dirac’s delta and Tp(t) is a slowly time varying
sampling period, and the latter can be written as

x(t) = w(t) cos(2p ( f0 + D cos(2p fmt))t) (10)

where D ≪ 1 and, in both examples, w(t) is a stationary or ACS
signal. Moreover, the output y(t) of the Doppler channel existing
between a transmitter and a receiver with nonzero relative radial
acceleration is GACS when the input signal x(t) is ACS [9]. Such a
channel is characterized by the input-output relationship

y(t) = a x(t −D(t)) (11)

where a is attenuation and

D(t) , d0 +d1t +d2t2 d2 6= 0 (12)

is a quadratically time-varying delay. Further examples where the
GACS model turns out to be appropriate in mobile communications
systems can be found in [8], [9].
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Figure 1: Support in the (a , t ) plane of the cyclic autocorrelation
function Rxx∗(a , t ) of (a) an ACS signal and (b) a GACS signal.

3. MEAN-SQUARE CONSISTENCY OF THE CYCLIC
CORRELOGRAM

The cyclic correlogram is defined as

Rxx∗(a , t ; t0,T ) ,

∫

R

wT (t − t0) x(t + t ) x∗(t) e− j2p a t dt (13)

where wT (t) is a unit-area data-window nonzero in (−T/2,T/2).
In order to prove the asymptotic properties of the cyclic correl-

ogram, the following assumptions should be made.

Assumptions

1) The stochastic process x(t) is (second-order) GACS in the wide
sense, that is, for any choice of z1 and z2 in {x,x∗},

E{z1(t + t 1) z2(t)} = å
n

R(n)
z1z2(t 1) e j2p a (n)

z1 ,z2 (t 1)t . (14)

2) For any choice of z1 and z2 in {x,x∗}, the fourth-order cumulant
cum{x(t + t 1),x∗(t + t 2),z1(t + t 3),z2(t)} can be expressed as

cum{x(t + t 1),x
∗(t + t 2),z1(t + t 3),z2(t)}

= å
n

C(n)
xx∗z1z2

(t 1, t 2, t 3) e j2p b n(t 1,t 2,t 3)t (15)

where cumulants of complex processes are defined according to
[16, App. A].

3) For any choice of z1 and z2 in {x,x∗} it results

å
n
‖R(n)

z1z2‖¥ < ¥ (16)

where ‖R‖¥ , esssupt ∈R |R(t )| is the essential supremum of
R(t ).



4) For any choice of z1 and z2 in {x,x∗} it results

å
n
‖C(n)

xx∗z1z2
‖¥ < ¥ . (17)

5) There exists a positive number M4 such that

E
{

|x(t)|4
}

6 M4 < ¥ ∀t ∈ R . (18)

6) wT (t) is a T -duration data-tapering window that can be ex-
pressed as

wT (t) =
1
T

a(t/T ) (19)

with a(t) ∈ L1(R)∩L¥ (R),

∫

R

a(t)dt = 1 (20)

lim
T→¥

a(t/T ) = 1 ∀t ∈ R . (21)

7) For any choice of z1 and z2 in {x,x∗} it results

å
n

∫

R

∣

∣

∣
R(n)

z1z2(s)
∣

∣

∣
ds < ¥ . (22)

8) For any choice of z1 and z2 in {x,x∗} and ∀t 1, t 2 ∈ R it results

å
n

∫

R

∣

∣

∣
C(n)

xx∗z1z2
(s+ t 1,s, t 2)

∣

∣

∣
ds < ¥ . (23)

Under the above assumptions we have [13]

lim
T→¥

E{Rxx∗(a , t ; t0,T )} = Rxx∗(a , t ) (24)

lim
T→¥

T cov{Rxx∗(a 1, t 1; t1,T ),Rxx∗(a 2, t 2; t2,T )} = O(1) . (25)

That is, the cyclic correlogram is a mean-square consistent estima-
tor of the cyclic autocorrelation function.

4. ASYMPTOTIC NORMALITY OF THE CYCLIC
CORRELOGRAM

Let

zi(t) ,
[

x(t + t i) x∗(t)
][∗]i

, i = 1, . . . ,k (26)

be second-order lag-product waveforms with optional complex con-
jugations [∗]i, i = 1, . . . ,k, and let us make the following assump-
tions:

Assumptions

9) The stochastic processes zi(t), i = 1, . . . ,k are jointly kth-order
GACS; that is

cum{zk(t),zi(t + si), i = 1, . . . ,k−1}

= å
n

C(n)
z1···zk (s1, . . . ,sk−1) e j2p b (n)

z1 ···zk (s1,...,sk−1)t . (27)

10) For every t i, i = 1, . . . ,k and every conjugation configuration
[∗]1, . . . , [∗]k, it results that

å
n

∫

Rk−1

∣

∣

∣
C(n)

z1···zk (s1, . . . ,sk−1)
∣

∣

∣
ds1 · · · dsk−1 < ¥ . (28)

11) For every k ∈ N and every {ℓ1, . . . , ℓn} ⊆ {1, . . . ,k}, there exists
a positive number Mℓ1···ℓn such that

E
{

|zℓ1(t1) · · ·zℓn(tn)|
}

6 Mℓ1···ℓn < ¥ ∀t1, . . . , tn ∈ R . (29)

Under Assumptions 1)–11), the following result can be proved
[14], where the made assumptions allow the interchange of cum{·},
sum, and integral operations.

Lemma 4.1 For any k > 2 and e > 0 it results that

lim
T→¥

T k−1−e cum
{

R[∗]1
xx∗ (a 1, t 1; t1,T ), . . . ,R[∗]k

xx∗ (a k, t k; tk,T )
}

= 0 .

(30)

Proof:

cum
{

R[∗]1
xx∗ (a 1, t 1; t1,T ), . . . ,R[∗]k

xx∗ (a k, t k; tk,T )
}

= cum

{

∫

R

w[∗]1
T (u1 − t1) z1(u1) e− j2p [−]1a 1u1 du1,

. . . ,
∫

R

w[∗]k
T (uk − tk) zk(uk) e− j2p [−]k a kuk duk

}

=
∫

R

· · ·
∫

R

cum{z1(u1), . . . ,zk(uk)}

w[∗]1
T (u1 − t1) · · ·w[∗]k

T (uk − tk)

e− j2p [−]1a 1u1 · · ·e− j2p [−]k a kuk du1 · · · duk

=
∫

Rk
cum{zk(u),zi(u+ si), i = 1, . . . ,k−1}

k−1

Õ
i=1

1
T

a[∗]i
(

u+ si − ti
T

)

e− j2p [−]ia i·(u+si)

1
T

a[∗]k
(

u− tk
T

)

e− j2p [−]k a ku ds1 · · · dsk−1 du

=
∫

Rk
å
n

C(n)
z1···zk (s1, . . . ,sk−1) e j2p b (n)

z1 ···zk (s1,...,sk−1)u

k−1

Õ
i=1

1
T

a[∗]i
(

u+ si − ti
T

)

e− j2p [−]ia i·(u+si)

1
T

a[∗]k
(

u− tk
T

)

e− j2p [−]k a ku ds1 · · · dsk−1 du (31)

where [−]i is an optional minus sign which is present if the optional
conjugation [∗]i is present, in the third equality the variable changes
uk = u, ui = u+si, i = 1, . . . ,k−1 are made, and in the fourth equal-
ity Assumption 9) is used. Thus,

∣

∣

∣
cum

{

R[∗]1
xx∗ (a 1, t 1; t1,T ), . . . ,R[∗]k

xx∗ (a k, t k; tk,T )
}∣

∣

∣

6
‖a‖k−1

¥
T k−1 å

n

∫

Rk−1

∣

∣

∣
C(n)

z1···zk (s1, . . . ,sk−1)
∣

∣

∣
ds1 · · · dsk−1

∫

R

|a(s)|ds (32)

where the variable change s = (u− tk)/T is made. Therefore, from
(32), accounting for Assumptions 6) and 10), it immediately follows
that, for every k > 2 and every e > 0, (30) holds.

Theorem 4.1 For every fixed a i, t i, ti, i = 1, . . . ,k, the random vari-
ables

√
T Rxx∗(a i, t i; ti,T ) are jointly complex Normal.



Proof: From (25) we have that

lim
T→¥

cum
{√

T Rxx∗(a 1, t 1; t1,T ),
√

T R∗
xx∗(a 2, t 2; t2,T )

}

= lim
T→¥

cov
{√

T Rxx∗(a 1, t 1; t1,T ),
√

T Rxx∗(a 2, t 2; t2,T )
}

(33)

is finite and its expression is given in [13]. Moreover, from Lemma
4.1 with k > 3 and e = k

2 −1 in (30), we have

lim
T→¥

cum
{√

T R[∗]1
xx∗ (a 1, t 1; t1,T ), . . . ,

√
T R[∗]k

xx∗ (a k, t k; tk,T )
}

= 0 .

(34)
That is, for every fixed a i, t i, ti, the random variables√

T Rxx∗(a i, t i; ti,T ), i = 1, . . . ,k are asymptotically (T → ¥ )
jointly complex Normal [15].

5. DISCUSSION

For complex processes, a complete second order characterization
requires the knowledge of both the autocorrelation function and
the conjugate autocorrelation function [15]. In [14], it is shown
that the conjugate autocorrelation function of GACS processes is
completely characterized by the conjugate cyclic autocorrelation
function. Moreover, it is proved that, under Assumptions 1)–11),
the conjugate cyclic correlogram is an asymptotically Normal and
mean-square consistent estimator of the conjugate cyclic autocorre-
lation function.

From (24), (25), and Theorem 4.1 we have that the well-known
results for ACS processes that the cyclic correlogram is a mean-
square consistent and asymptotically Normal estimator of the cyclic
autocorrelation function (see [1], [2], [4]) can be extended to a wider
class of nonstationary signals, that is, the GACS signals.

Note that, as it is well known, for ACS processes, if the esti-
mation of the cyclic autocorrelation function is performed at a fixed
cycle frequency, say a 0, then the not exact knowledge of the value
of a 0 leads to a biased estimate. Moreover, an analogous result can
be found for GACS processes if the estimation is performed along a
fixed lag-dependent cycle frequency curve a = a n(t ). However, if
the estimation of the cyclic correlogram Rxx∗(a , t ; t0,T ) as a func-
tion of the two variables (a , t ) is performed, then, in the limit as
T → ¥ , the regions of the (a , t ) plane where Rxx∗(a , t ; t0,T ) is
significantly different from zero tend to the support curves of the
cyclic autocorrelation function, that is, the curves a = a n(t ), n ∈ I

(see (8)).
If the lag-dependent cycle frequencies are unknown, a statisti-

cal test for presence of generalized almost-cyclostationarity can be
performed to estimate the unknown functions a n(t ) by exploiting
the asymptotic complex Normality of the cyclic correlogram. A
point in the (a , t ) plane belongs to the estimated support curve if
the magnitude of the cyclic correlogram exceeds a threshold whose
value has to be fixed in order to get assigned probabilities of false
alarm or missed detection.

A different behavior of statistical-function estimators is found
for the class of the spectrally correlated stochastic processes [12]
that also extend the class of the ACS processes. Spectrally corre-
lated processes have the Loève bifrequency spectrum with spectral
masses concentrated on a countable set of curves in the bifrequency
plane. The support curves of the Loève bifrequency spectrum play,
for spectrally correlated processes, in the frequency domain, a role
analogous to that played for GACS processes, in the time domain,
by the lag-dependent cycle frequencies. The ACS processes are ob-
tained as a special case of spectrally correlated processes when the
separation between correlated spectral components can assume val-
ues only in a countable set (which is set of the cycle frequencies).
In such a case, the support curves of the Loève bifrequency spec-
trum are lines with unit slope. In [12] it is shown that, for spectrally
correlated processes, when the location of the spectral masses is un-
known, time- or frequency-smoothed versions of the periodogram

do not provide estimates of the bifrequency spectral correlation den-
sity function that are asymptotically unbiased and with zero asymp-
totic variance. Moreover, there exists a tradeoff between the depar-
ture of the spectral-correlation-type nonstationarity from the almost
cyclostationarity and the reliability of spectral correlation measure-
ments obtainable by a single sample path.
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[6] H. L. Hurd and J. Leśkow, “Strongly consistent and asymp-
totically normal estimation of the covariance for almost peri-
odically correlated processes,” Statistics & Decision, vol. 10,
pp. 201-225, 1992.

[7] L. Izzo and A. Napolitano, “The higher-order theory of gener-
alized almost-cyclostationary time-series,” IEEE Trans. Signal
Processing, vol. 46, pp. 2975-2989, November 1998.

[8] L. Izzo and A. Napolitano, “Linear time-variant transforma-
tions of generalized almost-cyclostationary signals, Part I:
Theory and method”, IEEE Transactions on Signal Process-
ing, vol. 50, pp. 2947-2961, December 2002.

[9] L. Izzo and A. Napolitano, “Linear time-variant transforma-
tions of generalized almost-cyclostationary signals, Part II:
Development and applications”, IEEE Transactions on Signal
Processing, vol. 50, pp. 2962-2975, December 2002.

[10] L. Izzo and A. Napolitano, “Sampling of generalized almost-
cyclostationary signals”, IEEE Transactions on Signal Pro-
cessing, vol. 51, pp. 1546-1556, June 2003.

[11] L. Izzo and A. Napolitano, “Generalized almost-
cyclostationary signals”, in Advances in Imaging and
Electron Physics, (P. W. Hawkes Editor), vol. 135, Chapter 3,
Elsevier, 2005.

[12] A. Napolitano, “Uncertainty in measurements on spectrally
correlated stochastic processes,” IEEE Transactions on Infor-
mation Theory, vol. 49, pp. 2172-2191, September 2003.

[13] A. Napolitano, “Mean-square consistency of statistical-
function estimators for generalized almost-cyclostationary
processes,” in Proc. of XII European Signal Processing Con-
ference (EUSIPCO 2004), Vienna, Austria, September 2004.

[14] A. Napolitano, “Estimation of second-order cross-moments of
generalized almost-cyclostationary processes,” submitted for
publication.

[15] B. Picinbono, “Second-order complex random vectors and
Normal distributions,” IEEE Transactions on Signal Process-
ing, vol. 44, pp. 2637-2640, October 1996.

[16] C. M. Spooner and W. A. Gardner, “The cumulant theory of
cyclostationary time-series, Part II: Development and applica-
tions,” IEEE Trans. Signal Processing, vol. 42, pp. 3409-3429,
December 1994.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Antonio Napolitano



