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ABSTRACT

In this paper, we propose an improvement of the classical image
multi-thresholding methods. The goal is to achieve the precise
determination of homogeneous zones in numerical images by pix-
els classification. The thresholds and the modes are obtained by
minimization of a new energy of gravitational clustering initial-
ized with the significant peaks of a cumulated histogram. Then,
the best modes and the best thresholds are calculated by alternate
optimization of an energy of multi-thresholding, leading to a piece-
wise quadratic potential. This energy is built from a total unifor-
mity criterion which measures the homogeneity of a given map of
regions. Finally, an unsupervised classification is performed by
use of a supervised variational classification approach which min-
imizes an adapted energy of transitions of phases. The potential
which controls the classification process is built from the previ-
ously determined best thresholds and modes. The experimental
study shows the efficiency and the robustness of the whole method.

1. INTRODUCTION

This paper is devoted to the problem of the precise determination
of homogeneous zones in numerical images by pixels classifica-
tion. We propose an improvement of classical multi-thresholding
methods.

The proposed method is composed of four steps. The gravita-
tional step gives a first determination of the significant thresholds
and modes of the processed image. From the representation of its
histogram in the form of a dynamic system, it is shown that the
final histogram converges towards a multimodal histogram. The
method is optimal and minimizes a specific energy denoted energy
of gravitational clustering. The subsequent multi-thresholding step
performs the determination of the best thresholds and the best modes
with regard to the total uniformity criterion. The proposed algo-
rithm is optimal and minimizes an energy called multi-thresholding
energy. The final unsupervised classification makes use of the
supervised classification method by variational approach of [7],
[2, 1]. The potential which controls the algorithm is completely
determined by the previously obtained best thresholds and modes.
The experimental study is carried out in the last section on differ-
ent degraded images to show the efficiency and the robustness of
the whole method.

This work was supported by the Regional Council of Brittany , and the
ERDF through the european Interreg3b project

2. FIRST STEP : GRAVITATIONAL CLUSTERING

2.1. Motivations

An histogram can be viewed as multimodal if the modes are suf-
ficiently distant from each other. However, the multi-modality is
not well defined as the minimal distance between the modes is not
explicitly given.

The histogram transformation that we propose, considers an
alternative modelling of the histogram by a dynamic representa-
tion. The values of the histogram are comparable with the masses
and the samples with the positions of a dynamic system of the pre-
viously defined masses.

The gravitational clustering does not apply to the histogram it-
self but to its dynamic representation. The previous multi-modality
point of view is then translated to the positions vectors. It is ex-
pressed using the distance between two components of the posi-
tions vectors rather than by using a distance between the values of
the original histogram.

Formally, we allow the histogram to take real values but only
in the range of real light intensities I . It must be contained in C(I)
the closed convex envelope of I .

In other words, the histograms are in H+
I (c(I)) where H+

a (b)
denotes the set of histograms indexed on A with support in B if
A 6= B. A dynamic system on I is a two-uplet (~h; ~x) ∈ R

I × R
I

of vectors indexed on I . The mobile vector ~x is called the vector of
the positions, the fixed vector ~h is called the vector of the masses.

The initial vector of the positions ~x0 is defined by x0
i = i.

The vector of the masses ~h is defined by ~h = ~hcum where hcum
i =

µcum({i}). hcum
i are the significant peaks of the cumulated his-

togram~hcum. They are computed from local histograms computed
on sliding windows with different sizes (16×16, 32×32, 64×64)
of the original image. The different sizes of the sliding window al-
low to take account of the spatial resolution of the image and to get
an initial histogram ~x0 with a well pronounced multi-modal form
[5].

The gravitational clustering acts by moving the positions vec-
tor of the initial vector given by ~x0. Its trajectory is modelled by a
function ~x(·) : R

+ 7→ C(I)I such as ~x(0) = ~x0.

2.2. The Gravitational Energy

The energy of gravitational clustering is defined by:

Qgc(~h; ~x) ,
1

2

∑

i∈I

∑

j∈I

hihjδi,j(~x)|xi − xj |
2 (1)

It measures the dispersion of the positions with regard to the rela-
tive centres of gravity. We call centre of gravity relative to a posi-



tion, the barycentre of the positions located within a radius lower
than a maximum preset distance and named gravitational radius.
The gravitational radius is a C1 function on the set of the positions
C(I) and with value in a compact of R

∗+. Thus, the maximum
distance is not constant, it is a function of the position of the con-
sidered masses.

The gravitational equation is built to cancel the derivative of
the energy of gravitational clustering ~x minimize Qgc(~h; ~x). This
equation defines the trajectory of the positions through the gravi-
tational field.

~x(0) = ~x0 and
d~x

dt
(t) = ~G(~h; ~x(t)) − ~x(t)

t → +∞

Each position can be moved towards its relative centre of gravity.
~x = ~G(~h; ~x) where the gravitational field is given by:

~G(~h; ~x) , G(~h; ~x).~x (2)

Gi,j(~h; ~x) ,
[
∑

k∈I
δi,k(~x)hk

]

−1
δi,j(~x)hj (3)

δi,j(~x) , H(R(xi, xj) − |xi − xj |) (4)

The condition R(xi, xj) = sup(R(xi), R(xj)) > |xi − xj |
simply translate the determination of the relative centres of gravity.

The trajectory is simply controlled by the proximity and the
importance of specific masses. The positions are attracted by their
relative centres of gravity. The gravitational radius is essential to
precisely quantify the multi-modality with regard to the positions
of the modes.

In an initial version of the method, the relative centre of gravity
is calculated starting from the positions located in a constant radius
R0. In an improved version of the method, we authorize the radius
R(·) to be contrast dependent.

We consider a vector of the positions as multimodal if and only
if it merges with the vector of the relative centres of gravity.

Regular approximation of the gravitational field is then con-
sidered. It has exactly the same properties as those of the gravita-
tional field. The regularity of the gravitational ε-regularized field
directly ensures the existence and the uniqueness of a maximum
solution on R

+ thanks to the theorem of Cauchy-Lipschitz.

2.3. Implementation

The trajectory of the vector of the positions cannot be calculated
from the exact solving of its evolution ε-regularized equation. In
practice, the gravitational processing of an histogram can only be
carried out using a discrete algorithm. The solution is modelled
by the following gravitational ε-regularized continuation. It is ob-
tained using an explicit numerical scheme. by simple discretiza-
tion of the gravitational ε-regularized equation using the finite dif-
ferences:

~xn+1 = ~xn + ∆t
[

~G(~h, ε; ~xn) − ~xn
]

(5)

=
[

∆t.G(~h, ε; ~xn) + (1 − ∆t).Id
]

.~xn (6)

The recurrence formula is repeated until the vector~g(~hcum; ~xn)
is stable by the gravitational ε-regularized field. The vector is
strongly multimodal , it satisfies Gi(~h

cum; ~xn) = Gj(~h
cum; ~xn)

if δi,j(~g(~hcum; ~xn)) = 1.

We have shown that the vector satisfying this condition is ac-
tually reached in a finite number of iteration. Moreover, its image
by the gravitational field merge with the vector of the centres of
gravity obtained at convergence.

Thus, the gravitational clustering returns a vector of the posi-
tions gradually constant on each class. Visually, the vector of the
positions takes a staircase shape.

The positions are converted into integer values to preserve a
meaning in the set of light intensities.

The histogram corresponding to ~x∞ is denoted histogram of
the centres of gravity hgc(·). It is multimodal and the modes are
given by the various levels of the vector ~x∞.

For this reason, we decide to stop the algorithm as soon as
d(Gi(~h

cum; ~xn)) = d(Gj(~h
cum; ~xn)) if δi,j(~g(~hcum; ~xn)) = 1.

This corresponds to weak multi-modality as opposed to strong
multi-modality.

3. SECOND STEP : THE MULTI-THRESHOLDING
ENERGY

The thresholds define a partition of the set of the light intensities.
The classes are formed of the intervals ranging between two con-
secutive thresholds. The modes are point to point associated with
the classes. They provide each one a single characteristic value
of the class. We deduce from it that the thresholds and the modes
must be ordered so that each mode lies between two consecutive
thresholds.

The aim of this section is to determine the best thresholds and
the best modes with regard to a criterion denoted the total unifor-
mity criterion. This choice is not coarse and the most intuitive is
not necessarily the best.

The total uniformity criterion measures the quality of a map of
homogeneous areas. Its principle is built on the idea that an area is
uniform if the dispersion of the grey levels is weak.

We can measure the uniformity of an area by estimating the
intra-area variance. A map of areas is known as uniform if the
areas which make it up, are uniform. We estimate the total unifor-
mity of a map by the weighted average, by the size of the different
areas, of the intra-area variances.

TU(u; uh) ,

N
∑

k=1

Nk(h;~s)Vk(h;~s)

,

N
∑

k=1

∫ sk

sk−1

h(t)
∣

∣t − Mk(h;~s)
∣

∣

2
dt

(7)

where

Mk(h;~s) ,

[

∫ sk

sk−1

h(t)dt

]

−1
∫ sk

sk−1

th(t)dt (8)

and {uh = l} is the area of label l.We expect the procedure of
extraction of the best thresholds and the best modes to minimize
this total uniformity criterion. Unfortunately, the formulation of
this criterion does not depend on neither the thresholds nor the
modes. The energy of multi-thresholding is built in order to co-
incide exactly with the total uniformity if the modes are equal to
the intra-area means. It measures the quality of the modes and
the thresholds knowing their number. This quality is estimated by



regarding the vector of the thresholds as an approximation in N
samples of the histogram. Its discrete version is given by:

Qmt(h;~s, ~m) ,
1

2

N
∑

k=0

xj<sk+1
∑

xj>sk

hj |xj − mk|
2

+
1

2

N−1
∑

k=1

∑

xj=sk

hj min
(

|xj − mk|
2, |xj − mk+1|

2
)

(9)
The optimal solution consists of a continuation which alternatively
minimizes the multi-thresholding energy with regard to the modes
and the thresholds. Assuming the modes ~m known, the energy
of multi-thresholding Qmt(h;~s, .) is convex with respect to the
thresholds. It admits a single minimum. This one is simply given
by the middle of the interval ranging between two modes:

sn
k =

(

mn
k + mn

k+1

)

/2 (10)

Assuming the thresholds ~s known, the vector of the modes which
minimizes the multi-thresholding energy is given by the barycen-
tres of the thresholds whose weights depend on the thresholds and
the histogram:

mn+1
k = Mk(h;~sn) (11)

The obtained solution at convergence (~smt, ~mmt) = lim(~sn, ~mn)
corresponds then to the best classification, since the multi-thresholding
energy limits to the maximum the error with the initial distribution
of the masses.

When the image is slightly degraded, the analysis of the his-
togram does not make it possible to correctly extract the modes
and the thresholds. It depends on the relative value of the noise
standard deviation from the inter-area contrast value. The use of
an isotropic filter of the heat equation type adapted to the noise
standard deviation value[6] allows to reveal the modes. Moreover,
the filter does not only regularize the image but the histogram too.

4. CLASSIFICATION

When the image is seriously degraded, the previous filtering pre-
treatment is not more sufficient and it is necessary to consider an
a priori homogeneity constraint to improve the classification re-
sult. Now, the problem is to find a classification method to which
it would be sufficient to give a set of representative modes of the
classes and which could take into account such an a priori homo-
geneity constraint. The modes would be given by the results of
the previously described multi-thresholding second step, leading
necessarily to a supervised classification method. Such a method
exists in the variational framework. The a priori homogeneity con-
straint can be introduced by adding to the usual classification term,
defined by a potential, an additional regularization term translating
the homogeneity constraint. This method was developed by Sam-
son [7] and then Aubert and al [2, 1]. It derives from the various
work undertaken on the theory of Van der Waals-Cahn-Hilliard in
mechanics of fluids for the phases transitions [3, 4, 8].

The efficacy of image classification by the variational approach
generally depends on the relevant choice of the involved parame-
ters such as the potential W (·). The potential W (·) is completely
determined by its stable and unstable phases.

Qpt(W ;u) ,

∫

Ω

W (u) (12)

In our work, this classification method becomes attractively unsu-
pervised since the potential is automatically given from the best
thresholds ~smt and the best modes ~mmt. It is sufficient for that to
build a potential whose stable phases are given by the modes. The
unstable phases are then given by the thresholds. We define the
potential W (~s, ~m; ·) : R 7→ R

+ by:

W (~s, ~m;U) ,



























+|U − m1|2/|m1 − s1|2 if U ∈] −∞, s1 − η[,

+|U − mk|
2/|mk − sk−1|

2 if U ∈]sk−1 + η, mk − η[,

−|U − sk|
2/|sk − mk |

2 + Ak(η) if U ∈]sk − η, sk + η[,

+|U − mk|
2/|sk − mk |

2 if U ∈]mk + η, sk − η[,

+|U − mN |2/|mN − sN−1|
2 if U ∈]sN−1 + η, +∞[.

(13)
with Ak(η) , 1 − 2η/|sk − mk| + 2η2/|sk − mk|

2 to get a
sufficiently regular potential. In practice, the value of η is taken
very near or equal to zero. Then, Qpt writes:

Qpt(W,ϕ, ε; u) ,

∫

Ω

[

εϕ(|∇u|) +
1

ε
W (u)

]

(14)

Two different schemes can be considered to get the solution. A
first scheme performs an alternate minimization using the semi-
quadratic algorithm [7] and [2, 1]. The second scheme realizes a
direct minimization of the dynamic equation associated with (14)
[7] and [2, 1]. However, the method of alternate minimization
is more precise than that of the direct resolution of the dynamic
equation when the regularization parameter is suitably selected.

5. EXPERIMENTAL RESULTS

The comparative study was carried out by first applying the ini-
tial and improved gravitational methods on different images of the
french data bank of the GDR-PRC-ISIS, among them [LENA],
[BATEAU] and [SAVOISE]. The number of modes was initially
obtained by the initial method. The amplitude of the gravitational
radius was then modulated in the improved method in order to ob-
tain the same number of modes. We retain the total uniformity
criterion as the main evaluation criterion. We also consider the
usual comparison criteria of two images: the mean absolute er-
ror MAE, the mean quadratic error MQE, the maximum error
ME, the peak signal-to-noise ratio PSNR. The objective is to
prove the homogeneity of the areas composing a given image. The
quality of the images obtained by the improved method is globally
more homogeneous than that of the images obtained by the initial
method (Fig.1).

Algorithme TU
Comparative Criteria

[MAE] [MSE] [ME] [PSNRdB]

Initial Method 42.783 5.966 7.067 25 31.146
Improved Method 33.757 4.904 5.818 30 32.836

Initial Method 56.069 6.358 7.683 39 30.420
Improved Method 51.944 6.122 7.211 36 30.971

Initial Method 4.252 0.426 2.126 90 41.581

Improved Method 4.252 0.426 2.126 90 41.581

Table 1. Comparative results of the initial and improved meth-
ods, up and down for the images [BATEAU] 10 modes, [LENA] 8
modes, and [SAVOISE] 3 modes

Table 1 confirms the visual observation of the processed im-
ages: the results are generally better for the improved method,
except for the maximum error criterion. Indeed, the improved
method can lead to a punctual large deviation of light intensity



between the original image and the multi-thresholded image if this
deviation are compensated on the overall image.

Now, to prove the robustness to the observation noise, the three
images were preliminary degraded with additive noise (2). Three
methods of determination of homogeneous zones are subsequently
compared: a multi-thresholding method previously developed by
the authors [Kerm], the direct minimization [Sams1] and finally
the alternate minimization [Sams2] [7] and [1].

We present afterwards the original image [LENA], the de-
graded image, the potential used to control the classification, as
well as the obtained map of homogeneous areas (Fig.2).

In order to objectively evaluate the results, we estimate the to-
tal uniformity measure on the original images using each obtained
map of homogeneous areas.

Image [Kerm] [Sams1] [Sams2]

[BATEAU] σb = 12 221.749 128.653 115.039

[LENA] σb = 10 169.899 126.72 133.652
[SAVOISE] σb = 14 248.378 211.116 213.658

Table 2. Total Uniformity

The method of classification using the alternate minimization
is better provided that the parameter of regularization is well se-
lected. However, it is much slower and more constraining than
the method using direct minimization. The results obtained by the
latter are quite good and easier to control.

6. SUMMARY AND CONCLUSIONS

Classification of degraded images with different noise levels show
the potential of the whole system: it is rather effective for the de-
termination of homogeneous areas in an image, and allows a sig-
nificant data reduction.

The proposed method has the main advantage to be optimal
and robust to the observation noise. The results can be easily used
for further image processing tasks: for example, to identify the
nature of the noise and to estimate its variance.

7. REFERENCES
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