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ABSTRACT

A fast iterative algorithm for pre-equalisation of a nonlinear
dynamic (with memory) system is presented . The algorithm
is based on the secant method for root-finding. Within a few
iterations the nonlinear and dynamic effects of the system,
modelled, e.g., with a Volterra or Wiener model, can be com-
pensated very well. The algorithm is then used to linearise
a nonlinear power amplifier, modelled as a Wiener system.
Measurement results prove the excellent performance of the
presented method.

1. INTRODUCTION

Nonlinear systems arise frequently in applications, e.g., loud-
speakers are nonlinear and power amplifiers in wireless com-
munications are driven near saturation due to efficiency rea-
sons. Pre-equalisation of such (often weakly) nonlinear sys-
tems can be used to linearise the whole signal path. Digital
pre-distortion is a promising technique for pre-compensating
nonlinear systems. The principle is to pre-distort the sig-
nal in the digital domain in such a way that the intercon-
nection of the pre-distortion unit and the nonlinear system
is as linear as possible. Since pre-distortion works entirely
in the digital domain it is especially suited for Software De-
fined Radio (SDR) systems. Undesired spectral broadening
of the transmitted signal in wireless communication systems
and in-band distortions can be reduced significantly.

In 3G communication systems dynamic effects (memory
effects) have impact due to increased signal bandwidths [1].
This makes the task of pre-distortion complicated, since a
nonlinear dynamic system has to be pre-equalised. Methods
based on look-up-tables, which are a tabulated inverse of the
nonlinear system, cannot be applied due to the extreme com-
plexity. Further, analytic solutions for the pre-inverse of the
nonlinear system are not known in most cases.

This paper is focused on an iterative method, based on
the secant method for root-finding, which solves the pre-
distortion task in an approximate way. The method is tested
via measurements on a microwave power amplifier. It is
shown that significant reduction of the nonlinear distortion
can be achieved, see Sec. 4.1 further ahead.
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2. ITERATIVE EQUALISATION WITH THE
SECANT METHOD

The equalisation problem is represented graphically in Fig. 1.
A pre-equaliser P equalises the nonlinear dynamic system N.

P N- - -u[n]
y[n]

z[n]

Figure 1: Nonlinear equalisation problem

Mathematically, the problem can be formulated as

N(P(u[n])) = L(u[n]) , (1)

where L is a linear operator and u[n] denotes the input signal.
If L = I, the identity operator, the filter P is the pre-inverse
of the nonlinear system. Even for static nonlinearities, e.g.,
polynomials, analytic solutions for the pre-inverse are not
known in the majority of cases. If the nonlinear system is
dynamic, the inverse is even harder to find. Typical examples
of such systems are the often used Volterra series [2, 3] and
simplifications, such as Wiener systems (linear filter in front
of a static nonlinearity) or Hammerstein systems (static non-
linearity in front of a linear filter). Since analytic solutions
for the pre-filter P are seldom known, an iterative method is
proposed here which converges very fast, within four to six
iterations for the investigated cases. Other approaches ex-
ist which determine the parameters of a certain pre-filter P,
e.g., the inverse modelling approach [4]. In this case, the
post-inverse is approximated and then used as a pre-inverse.
Depending on the nonlinear filter N this might give poor re-
sults.

Reformulation of (1) gives

N(y[n])−L(u[n]) = S(y[n]) = 0 , (2)

with P(u[n]) = y[n]. The solution to the above equation is
the signal after the pre-filter for a specific nonlinear filter N

and a targeted linear operator L, which in the pre-distortion
context is a simple linear amplification, L(u[n]) = g ·u[n]. A
fast iterative method for solving (2) for the unknown signal
y[n] (which is equivalent to determining the pre-filter P) is
the Newton method [5]

yi[n] = yi−1[n]− (S
′
(yi−1[n]))−1

S(yi−1[n]) . (3)

The convergence rate of the Newton method, if it converges,
is quadratic, meaning that



‖yi[n]− y[n]‖ ≤ c‖yi−1[n]− y[n]‖2 , (4)

with some constant c and y[n] being a possible solution
for (2). This method has the drawback that the operator S

must be analytic, otherwise the Jacobian S
′

is meaningless.
The equivalent complex baseband models for the power am-
plifier used here are not analytic, cf. (7) and (8). Hence, the
Newton method cannot be applied [6]. Further, the Jacobian

S
′
has to be determined and evaluated at each iteration which

increases the complexity.
Here, the secant method is proposed for solving (2) for

y[n]. This method converges nearly as fast as the Newton
method – the convergence rate is equal to the golden ratio
φ = 1.618 . . . – but does not require that S is analytic, there-
fore allowing for a larger class of nonlinear systems N. The
iteration rule is

yi[n] = yi−1[n]−µnSn(yi−1[n]) (5)

with the approximate Jacobian

µn =
yi−1[n]− yi−2[n]

Nn(yi−1[n])−Nn(yi−2[n])
. (6)

For determining one sample of y[n], (5) has to be evalu-
ated a certain number of times i = 1,2, . . . , I, therefore the
need for an algorithm with high convergence rate. Generally,
N is an operator with memory. If an approximate solution
yI [n−m],m ≥ 1, I denoting the total number of iterations,
has been found, these values parameterise the operators N

and S. The operators become simple, parameterised func-
tions which are time-variant and marked therefore with the
time index n. It has to be noted that the convergence of the
method (5) is not guaranteed – it depends on the operator S

and therefore on the model N and the targeted linear operator
L, as well as on the range of the input signal u[n] whether a
solution y[n] can be found or not. Since the non-linearities
are not very hard, the algorithm in (5) does not experience
converge problems and three to four iterations are sufficient
for practical applications.

Another approach is successive approximation, proposed
in [7] for general Volterra systems and applied in [8] for
memoryless systems, where (1) is reformulated as a fixed-
point equation. This method converges with linear order and
is thus much slower than (5), cf. [6] for a comparison with
the Newton method.

3. DERIVATION OF BLACK-BOX MODELS
In this section two mathematical black-box models [9], a
Volterra model and a Wiener model, are used to model a
multi-stage microwave high-power amplifier (HPA).

3.1 Measurement Setup

In Fig. 2 the measurement setup is presented. The test-signal
u[n], a multi-tone signal with a bandwidth of 1 MHz and 101
tones, equally spaced and with random phases, is generated
in a PC. The complex digital baseband signal is converted
to analog with the Rhode&Schwartz I/Q modulation gener-
ator AMIQ. The analog in-phase and quadrature-phase sig-
nals are then used to modulate a carrier at 1,9 GHz, using the
Rhode&Schwartz Vector Signal Generator SMIQ. This test
signal has a relatively high crest-factor of 8,5 dB. A single-
stage driver amplifier (Minicircuits ZHL-42W) with a mini-
mum gain of 30 dB and a three-stage high-power LDMOS
EDGE amplifier follow. After attenuation, the output signal

is down-converted and demodulated with a PSA signal anal-
yser form Agilent, which delivers the complex baseband out-
put signal d[n] to the PC. The power meter is used to control
precisely the total output power, see Sec. 4.1 further ahead.
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Figure 2: Measurement setup

3.2 Modeling Results

The first step is to derive a model N of the power amplifier
chain, based on the recorded input/output data {u[n],d[n]}.
Since the bandwidth is limited by the signal analyser to
8 MHz, an input signal with a maximum bandwidth of 1 MHz
is used. With this, all harmonics up to the seventh order can
be observed.

Two models are compared: a Volterra model and a
Wiener model. The equivalent complex baseband Volterra
model reads

z[n] =
P−1

∑
p=0

N2p+1

∑
n2p+1=0

h[n2p+1]
p+1

∏
i=1

u[n−ni]
2p+1

∏
i=p+2

u∗[n−ni] , (7)

where for shorter notation the indices are summarised
in n2p+1 = [n1;n2; . . . ;n2p+1]

T and, correspondingly, the
memory-lengths of the kernels are specified in N2p+1 =
[N1;N3; . . . ;N2p+1]. A vector-valued summation index with
2p + 1 elements corresponds to a 2p + 1-fold summation.
The total nonlinear order is 2P + 1, the ∗ denotes complex
conjugation.

The Wiener model on the other hand is

z[n] = H(u[n])
P

∑
p=0

θp p2p (|H(u[n])|) , (8)

where H(·) = ∑N
i=0 hiq

−i is the linear filter and p2p(·) are
orthogonal polynomials having only even powers. Here, the
even Hermite polynomials are used. For the estimation of the
parameters the LS-method is used. For the Volterra model,
the LS-method can be applied directly since the model is
linear-in-parameters. The Wiener model is only linear with
respect to the parameters θp of the static nonlinearity. Here,
a two step estimation is performed: in the first step, the mea-
sured input/output data is used to estimate the parameters hi

of the linear filter with the LS-method. The input signal is
then passed through this estimated linear filter giving a new
signal which is the input signal for the LS-estimation of the
parameters of the static nonlinearity in the second step. In
Tab. 1 the achieved normalised MSE is tabulated. The nor-
malised MSE is



case Pout [dBm] NMSEWiener[dB] NMSEVolterra[dB]

1 42,3 -37,3 -38,9
2 43,9 -35,5 -37,1
3 45,4 -33,8 -35,3

Table 1: Normalised MSE of Wiener and Volterra models

NMSE [dB] = 20log
‖d[n]− z[n]‖2

‖d[n]‖2
, (9)

where d[n] is the measured output signal and z[n] is the output
signal of the model. The amplifier input power is increased
in three steps, corresponding to cases 1 to 3 in Tab. 1, driving
the power amplifier more and more into saturation.

The Wiener model is a four tap FIR filter with a seventh
order nonlinear function, whereby the even order Hermite
polynomials up to the sixth order are used, cf. (8). The
Volterra model contains all nonlinear parts up to the sev-
enth order with the memory lengths of the kernels N7 =
[5,3,2,1]T . Increasing the memory lengths does not reduce
the modelling error. It can be observed that with increas-
ing saturation the modelling quality decreases. The mod-
elling error of the Wiener model is only slightly larger (max.
1,6 dB) than the modelling error of the Volterra model – but
the Wiener model requires only eight parameters, whereas
the Volterra model requires 36 parameters. Therefore, the
Wiener model is used to calculate the signal after the pre-
distortion filter using the algorithm (5).

Fig. 3 shows the measured spectra of the output signal
of the system and the output signal of the Wiener model for
case 1, Tab. 1. The power is normalised to 1 W, the sam-
pling frequency fs = 10,24 MHz. It can be seen that the third
order nonlinear distortion is dominating, the distortion due
to the fifth order intermodulation products is already more
than 50 dB smaller than the in-band signal. The estimation
of the third-order intermodulation products is accurate, the
fifth- and seventh order products are underestimated due to
the very low signal level (more than 50 dB smaller than the
in-band signal).
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Figure 3: Spectra of measured output signal and output sig-
nal of the Wiener model for case 1, see Tab. 1.

4. EQUALISATION
After the modelling the calculation of the pre-distorted signal
using (5) follows. Once this is done, the signal y[n] is used
to excite the power amplifier chain. With a power ampli-
fier driven in saturation the overall gain with pre-distortion
will be smaller than the gain without pre-distortion if the
crest-factor of the input signal remains the same. Therefore,
since the output power with pre-distortion decreases, it must
be compared with a backed-off power amplifier – the output
power with and without pre-distortion must be the same.

In the following, a measure for the performance gain of
the proposed pre-distortion method is the total power in the
out-of-band third harmonic zone using a backed-off (OBO
stands for output back-off) power amplifier vs. the power in
this zone using pre-distortion,

g3[dB] = 10log

(

P3,OBO

P3,PD

)

. (10)

Here, P3,OBO is the signal power in the out-of-band third or-
der harmonic zone (see Fig. 5 for a detailed view) with out-
put back-off, whereas P3,PD is the power in this zone with
pre-distortion (PD). Therefore, g3 denotes the gain by using
pre-distortion vs. a simple back-off. The out-of-band third
order zone extends over the intervals IL,3 = [−0,15;−0,05]
and IU,3 = [0,05;0,15] of the normalised frequency. It has
to be noted that in this zone also higher order intermodula-
tion products are present. The power spectral density in 90%
of this zone, resulting in a 5% guard interval to the neigh-
bouring zone, is accumulated, giving the signal power in this
zone. In the out-of-band fifth order zone, which extends over
the intervals IL,5 = [−0,25;−0,15] and IU,5 = [0,15;0,25]
of the normalised frequency f / fs, no reduction of the signal
power could be achieved. From the Figs. 3 and 4 it can be
seen that the distortion due to the third order intermodulation
products is dominating, the distortion due to higher order in-
termodulation products is very low, more than 50 dB smaller
than the in-band signal. The modelling of this higher order
(fifth and seventh) intermodulation products is not accurate
enough to achieve a performance gain with pre-distortion.

The other performance measure is the total deviation
from the targeted linear amplification. Here, the MSE be-
tween the actual measured output signal zOBO[n] and zPD[n],
either with output back-off or pre-distortion, and the targeted
linearly amplified input signal d[n] = g ·u[n], g denoting the
gain, is computed and compared against each other, which
gives

gMSE [dB] = 20log

(

‖zOBO[n]−d[n]‖2

‖zPD[n]−d[n]‖2

)

(11)

as a performance measure. With this measure the total dis-
tortion is taken into account, also the in-band distortion.

4.1 Equalisation Results
In Fig. 4 the spectra of the output signal with and without
pre-distortion (but with OBO) are represented. The total
power is again normalised to 1 W. For the actual measured
output power cf. Tab. 2. For the calculation of the out-
put signal of the pre-distortion filter y[n] six iterations of the
algorithm in (5), using the initial values y0[n] = 0,∀n and

y1[n] = 10−3,∀n, are performed.
Fig. 4 should be compared to the Fig. 3. It can be seen

that an output back-off of only 1,4 dB does not result in a no-
ticeable reduction of the nonlinear distortions, whereas pre-
distortion reduces the distortions significantly. In Fig. 5 a



detailed view of the out-of-band third-order harmonic zone
is given, where the performance gain by using pre-distortion
vs. back-off is clearly visible.
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Figure 4: Spectra of measured output signal with and without
pre-distortion (PD) for case 1, cf. Tab. 2, using a Wiener
model for the power amplifier.
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Figure 5: Detailed view of the upper and lower out-of-band
third order harmonic zone for case 1, cf. Tab. 2. The
square markers denote the measured output signal with pre-
distortion.

The measured output power, as well as the reduction of
the power in the out-of-band third order harmonic zone, g3,
and the reduction of the overall distortion, gMSE , compared
with backing-off, can be found in Tab. 2. In case 1, which
corresponds to the least output power and therefore to the
case where the power amplifier is not too much in saturation,
pre-distortion yields a significant gain with respect to simple
back-off. The spectral broadening due to the third order in-
termodulation could be reduced significantly, as well as the
total distortion, both compared with an equivalent back-off.
If the power amplifier is driven by a higher input power, the

case Pout/[dBm] OBO/[dB] gMSE/[dB] g3/[dB]

1 40,9 1,4 9,7 10,7
2 41,6 2,3 11,1 6,7
3 43,3 2,1 3,3 4,1

Table 2: Reduction of power in the third order out-of-band
spectral zone by using pre-distortion vs. back-off (g3) and
reduction of overall distortion (gMSE ).

reduction in nonlinear distortion compared with the simple
back-off becomes smaller, but is still present. The equivalent
backing-off is larger in these cases, corresponding to a larger
gain-decrease when pre-distortion is used.

5. CONCLUSIONS
A fast and simple iterative algorithm for pre-equalising a
nonlinear dynamic system has been presented. The algo-
rithm was applied for pre-distortion of a nonlinear power am-
plifier. For this, a black-box model of a microwave power
amplifier-chain was created. It was shown that a relatively
simple Wiener model is sufficient for the power amplifiers
investigated. The Wiener model was compared to a Volterra
model which yielded only slightly better modelling results
but required far more parameters.

Digital pre-distortion, based on the presented method,
was then compared to simple back-off, i.e., a reduction of
the input power, resulting in a more linear behaviour of
the power amplifier. Measurement results showed that pre-
distortion can yield a significant reduction in nonlinear dis-
tortion with respect to a back-off. Large gains are achieved
if the power amplifier is not driven too much into saturation.
For higher saturation levels the linearization results in a sig-
nificant gain-reduction and the gain of pre-distortion, com-
pared to an equivalent back-off, decreases.
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