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ABSTRACT

This paper derives three-dimensional passive bearings-
only localization algorithms and examines their perfor-
mance when the sensor measurements are corrupted by
large additive noise. Among the algorithms studied,
the maximum likelihood (ML) estimator is shown to
have the best localization performance. The ML es-
timate is computed using the iterative Gauss-Newton
(GN) algorithm with the initial guess obtained from a
pseudolinear estimator. Bearing measurements are av-
eraged over finite-length non-overlapping windows in or-
der to reduce the computational complexity of the GN
algorithm when the number of bearing measurements is
large. Simulation studies are provided to illustrate the
superior performance of the ML estimator in a radar
localization application.

1. INTRODUCTION

Bearings-only emitter localization is a passive local-
ization technique that employs bearing (direction-of-
arrival) measurements of received signals originating
from an emitter. In bearings-only localization, the emit-
ter location is obtained from the point of intersection
of bearing lines emanating from different observer posi-
tions. This estimation process, which is referred to as
triangulation, yields a unique intersection point for bear-
ing lines in the absence of measurement errors. However,
the noise present in bearing and observer position mea-
surements necessitates the formulation of an optimal so-
lution in a statistical framework by making use of the
noisy measurements, as well as any a priori information
about the noise statistics.

Passive emitter localization has been an active re-
search area for several decades. The pioneering work in
this area is that of Stansfield [1]. Most of the current
emitter localization algorithms are based on Stansfield’s
algorithm. The Stansfield estimator is a weighted least
squares (WLS) estimator that can be viewed as a small
bearing noise approximation of the maximum likelihood
(ML) estimator for independent Gaussian bearing noise
and no observer position error [2]. It also assumes the
prior knowledge of the emitter range from the observer
positions to calculate a weighting matrix. This strong
assumption can be dispensed with by resorting to the
method of orthogonal vectors which results in a pseudo-
linear estimator [3]. The passive emitter localization
problem can be recast as a nonlinear LS problem by us-
ing the ML solution. Linearization of the nonlinear LS
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problem was proposed in [4] by way of Taylor series ex-
pansion, resulting in an iterative estimation algorithm.

Despite its simplicity and low complexity, a major
drawback of the pseudolinear estimator is the large es-
timation bias due to the correlation between the mea-
surement matrix and the bearing noise. The bias of the
pseudolinear and Stansfield estimators has been studied
in the tracking and emitter localization literature (see
e.g. [5, 3, 2, 6]). To overcome the bias of the pseudolin-
ear estimator, a modified instrumental variable (MIV)
estimation algorithm was proposed in [3]. The MIV es-
timator is a batch iterative algorithm that is obtained
from the Gauss-Newton iterations for the ML estima-
tor by a linear approximation of the estimation error.
In [7], an iterative instrumental variable (IV) estima-
tor was developed for emitter tracking. This estima-
tor uses the predictions of the present parameters from
past measurements to achieve uncorrelation between the
measurements and the present bearing noise under the
assumption of independent bearing noise. Neither of
these IV algorithms have a closed-form solution because
they both rely on an iterative calculation of the instru-
mental variable matrix. The convergence of iterative
estimators is known to be sensitive to initialization and
the stepsize parameter [8].

In the work presented here we report three-
dimensional (3D) extensions of the pseudolinear and ML
estimators for 3D geolocation of emitters when the sen-
sor noise is large. First a 3D orthogonal vector estima-
tor is proposed. Then, a novel 3D PLE is developed
based on 2D projection and separate estimation of the
z-coordinate of the emitter location. Finally the optimal
ML estimator is derived. While the first two estimators
are closed-form, the ML estimator requires iterative nu-
merical search. The estimation performance of the algo-
rithms is demonstrated by way of computer simulations.

2. 3D LOCALIZATION USING BEARING
MEASUREMENTS

A 3D localization scenario for an emitter at p =

[P, Py, P-]T in Cartesian coordinates is depicted in Fig. 1

where a moving receiver collects bearing measurements

(0k, dx) at locations 7 = [ry(k),ry(k),r.(k)]". Each

bearing measurement consists of an azimuth angle 6y,

and an elevation angle ¢ in spherical coordinates.
The relationship between p and 7y is given by

p =7+ S (1)

where si is the noise-free bearing vector connecting



Emitter
p

Figure 1: Geometry for 3D bearings-only localization.

T to p. Premultiplying (1) with af that satisfies (i)
al'si =0 (i.e., ay, is orthogonal to sy) and (ii) ||ag|| = 1
gives

ayp=agry (2)
where knowledge of sy, is no longer necessary. The vector
Si. can be written as

cos ¢y, cos Oy,
S = ||Sk|| [COS ¢k sin@k] (3)

sin gf)k

Increasing ¢ by 7/2 radians in the normalized noise-
free bearing vector sy /||sk|| gives

cos(¢x, + m/2) cos by, — sin ¢y, cos O,
a;, = [cos(gbk + 7/2) sin Gk] = l sin ¢y, sin 9;@] (4)
sin(¢r + 7/2) cos P,

which satisfies the aforementioned orthogonal unit vec-
tor requirements.
To calculate the bearing angles (0, ¢x) from s =

[52:(K), 5y(K), 5. (/C)]T, we use

—tan~! Sy(k)
B s (5)
o = sin~! Sz(k)

skl

In practice, the noise-corrupted versions of the bearing
angles (0, ¢r) are available for locating the emitter:

O = Ox + wy,

- 6
Pk = Or + Ny ©

where wy, ni ~ N(0,0?), i.e., white Gaussian noise with

zero mean and variance o2.

3. 3D LOCATION ESTIMATORS

3.1 Orthogonal Vector Estimator

Define the orthogonal unit vectors for noisy bearing an-

gles:

—sin qgk CcoS ék

—sin ng sin ék . (7)
cos ¢y,

ap =

Then for N consecutive bearing measurements we can
write

~T ~T
al al T1 771
le= (8)
an anry N
N 7 N o~ 7 SN
A b n

where the 7 are nonlinear functions of the bearing noise
wy and ng:

S . 3
Nk = || 4k|| (SIH(U}A; - nk) - Sln(nk + wk)

— sin(2¢k + ng + wk) — sin(2¢k +ng — ’LUk) (9)
+ 2sin(2¢y + ni) — 2sin nk)

A least squares (LS) solution of Ap ~ b is given by
p=(ATA)TATD (10)

which is the closed-form 3D orthogonal vector estima-
tor (OVE). In the 2D case the OVE is identical to the
well-known pseudolinear estimator [3]. Because A and n
are correlated, the OVE exhibits bias [6]. The bias prob-
lem becomes worse with increased bearing noise variance
and increased range-to-baseline ratio.

3.2 3D Pseudolinear Estimator

The projection of the bearing lines onto the xy-plane
reduces the original 3D localization problem to a 2D lo-
calization problem. The 2D localization problem can be
solved by the 2D pseudolinear estimator (PLE) [5, 6].
The z-coordinate of the emitter location can be subse-
quently obtained from (5). We will refer to this location
estimator as the closed-form 3D PLE.

3.3 ML Estimator

The optimum maximum likelihood (ML) location esti-
mator is obtained from maximization of the joint prob-
ability density function of the bearing measurements
Ok, 0r), k = 1,...,N. The ML cost function to be
minimized is given by

Ju(p) = €" (p) K~ "e(p) (11)

where K = 021 is the 2N x 2N covariance matrix of
the bearing noise and e(p) is the 2N x 1 error vector

e(p) = [0 — 61(p),- - ,O0n — On (D),

- - - (12)
d)l - d)l(p)a o ad)N - d)N(p)]
with 05 (p) and ¢x(p) denoting the azimuth and eleva-
tion angle of p — 7y, respectively.
The ML estimate (MLE) is

Py, = arg min Jur (p). (13)
pERS

The MLE does not have a closed-from solution and re-
quires the use of a numerical search algorithm.



The Gauss-Newton (GN) algorithm, which is a batch
iterative minimization technique, is often employed to
calculate the MLE. The GN algorithm consists of
Piy1 =P — (JI K 'J) VI K e(p,), i=0,1,...
(14)
where J; is the 2N x 3 Jacobian of e(p) with respect to
p evaluated at p = p,:

[ sin ({1 (P;) - COSAGI (P;) 0 ]
di1 di1
sin GAN (D;) - COSAeN(i’i) 0
J. = din din 2 -
g sc1(p;) ss1(P;) *COSA(f’l(pi)
1B; =71l 1B; =71l dis
SCN (P;) 5§N(i’z) - COS% o~ (D;)
L 12, =7l 1B, =7l din |

In the above expression

diw = [|B;(1:2) = ri(1:2)]
sci(x) £ sin ¢y () cos O (x)

ssi, () £ sin ¢y (x) sin O, (z)

and p;(1 : 2) is a 2 x 1 vector containing the first two
entries of p,.

The initialization for the GN algorithm p, must be
chosen sufficiently close to the final estimate in order to
avoid divergence. This usually requires the use of an-
other closed-form estimator such as the 3D PLE. An al-
ternative approach is to select a point on one of the mea-
sured bearing lines, say, the first one given by (61, ¢1),
a certain distance away from the relevant receiver, and
use it as an initial guess:

cos ¢ cos 0y
Po =171+ do | cos ¢y sin b
sin (7251

(15)

Here dy is the distance of py from r; and must not be too
large. The GN iterations are stopped once the update
term becomes sufficiently small, i.e.,

1Pi1 — f%‘”z <7 (16)

where ~ is a threshold.

4. AVERAGING OF BEARING
MEASUREMENTS

In certain applications the sensor on the moving receiver
may produce very crude bearing angle estimates with
large noise. In such cases the location estimators will
require a large number of bearing measurements to re-
duce the estimation variance. The computational com-
plexity of the estimators increases with V. In partic-
ular, the complexity of the GN algorithm can become
prohibitively large for large N. Therefore, the selection
of N often involves a trade-off between complexity and
estimation performance.
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---LOS=0
LOS =1
A Radar

2000

0

-2000 N

g .

@ -4000 N

H] N\

N A
-6000 N

-8000

-10000
5000

4000 8000

3000
2000 4000

1000
y-axis (m) 0 o0

2000

x-axis (m)

Figure 2: Simulated 3D localization geometry with line-
of-sight information in local coordinates. The radar is
at the origin.

For a given N, the complexity can be reduced sig-
nificantly by means of averaging with negligible perfor-
mance degradation. The assumption made here is that
the difference between bearing angles for a range of bear-
ing measurements is very small. This means that for L
successive bearing measurements we have

Op = Opp1 - = 0Opip 1
Ok R Pt R R pgn—1-
Segmenting N bearing measurements into non-

overlapping blocks of length L and averaging each block
gives

—_
)
e

k=(i—1)L+1
iL _
> b

k=(i—1)L+1

(18)

|
~ =

where ¢ = 1,2,..., N/L. This averaging has the effect
of reducing the variance 2 by a factor L, i.e.,

2
B{?} = B{§}} = . (19)
It also reduces the number of measurements by a fac-
tor L, thereby easing the computational burden on the
localization algorithms.

5. COMPARATIVE SIMULATIONS

In this section we evaluate the performance of the 3D
location estimators for a simulated helicopter route and
line-of-sight information between the helicopter and the
radar. The emitter is assumed to be a stationary pulsed
radar with pulse repetition interval (PRI) of 1 ms.

The bearing angles are measured by a radar warning
receiver (RWR) on-board the helicopter. The RWR
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Figure 3: ML estimate of the radar location.

Bias Norm (m)

T (s) MLE PLE OVE
5 291 3332 3285
6 104 3004 3124
7 61 2685 2995
8 31 2399 2943
9 25 2147 2899
10 18 1973 2879
15 6 1524 2606
20 2 1310 2285

Table 1: Estimated bias.

produces very crude bearing measurements of received
radar pulses with root mean square error (RMSE) of 7°.
The average speed of the helicopter is approx. 30 m/s.
The bearing measurements are averaged using L = 100,
which means that the RMSE of averaged bearing mea-
surements (6, ¢r) is 0.7°. The time separation between
averaged bearing measurements is L x PRI = 100 ms.

The simulated geometry in local Cartesian coordi-
nates is shown in Fig. 2. The range-to-baseline ratio is
very large for parts of the helicopter route with line of
sight (LOS=1). This makes the localization task quite
challenging. Fig. 3 shows the MLE for one realization
of the bearing angle measurements over an observation
period of 10 s. The part of the helicopter route where
angle measurements were used for localization purposes
is also marked in Fig. 3 along with line-of-sight data.
The GN initial guess was obtained from the 3D PLE.
The stopping threshold was set to v = 107%. The bias
and RMSE estimates of the localization algorithms ob-
tained from 5,000 Monte Carlo simulations are listed in
Tables 1 and 2 for several observation periods 7. The
MLE has by far the best localization performance. The
severe bias problem with the PLE and OVE is evident.
The PLE appears to perform better than the OVE es-
pecially for large baselines.

6. CONCLUSION

Three bearings-only localization algorithms were devel-
oped for 3D emitter location. An averaging approach

RMSE (m)

T (s) MLE PLE OVE
5 1321 3336 3285
6 688 3009 3124
7 491 2690 3031
8 365 2404 2978
9 289 2152 2943
10 245 1978 2907
15 137 1527 2648
20 93 1313 2297

Table 2: Estimated RMSE.

was adopted to reduce the computational complexity of
the estimation algorithms. By way of simulation ex-
amples the PLE and OVE were shown to suffer from se-
vere bias problems in the presence of large bearing noise
and in large range-to-baseline ratio situations. The PLE
was observed to perform better than the OVE, thereby
making it a good candidate for initializing the GN algo-
rithm. The MLE implemented using the GN algorithm
was shown to have the best location performance.

REFERENCES

[1] R. G. Stansfield, “Statistical theory of DF fixing,”
Journal of IEE, vol. 94, no. 15, pp. 762-770, Decem-
ber 1947.

[2] M. Gavish and A. J. Weiss, “Performance analysis
of bearing-only target location algorithms,” IEEFE
Trans. on Aerospace and Electronic Systems, vol. 28,

no. 3, pp. 817-828, 1992.

[3] S. C. Nardone, A. G. Lindgren, and K. F. Gong,
“Fundamental properties and performance of con-
ventional bearings-only target motion analysis,”
IEEE Trans. on Automatic Control, vol. 29, no. 9,
pp- 775-787, September 1984.

[4] W. H. Foy, “Position-location solutions by Taylor-
series estimation,” IEEFE Trans. on Aerospace and
Electronic Systems, vol. 12, no. 2, pp. 187-194,
March 1976.

[5] V. J. Aidala and S. C. Nardone, “Biased estimation
properties of the pseudo-linear tracking filter,” IEFEE
Trans. on Aerospace and Electronic Systems, vol. 18,
pp- 432-441, July 1982.

[6] K. Dogangay, “On the bias of linear least squares
algorithms for passive target localization,” Signal
Processing, vol. 84, no. 3, pp. 475-486, March 2004.

[7] Y. T. Chan and S. W. Rudnicki, “Bearings-only and
Doppler-bearing tracking using instrumental vari-
ables,” IFEEE Trans. on Aerospace and Electronic
Systems, vol. 28, no. 4, pp. 1076-1083, October 1992.

[8] J.-P. Le Cadre and C. Jauffret, “On the conver-
gence of iterative methods for bearings-only track-

ing,” IEEFE Trans. on Aerospace and Electronic Sys-
tems, vol. 35, no. 3, pp. 801-818, July 1999.



	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Gokhan Ibal
	Kutluyil Dogancay



