
C- BASED RAPID PROTOTYPING FOR DIGITAL SIGNAL PROCESSING

Emmanuel CASSEAU, Bertrand LE GAL, Pierre BOMEL, Christophe JEGO*,
 Sylvain HUET and Eric MARTIN

LESTER lab, CNRS FRE2734, UBS University, France, http://lester.univ-ubs.fr:8080

* CNRS TAMCIC, GET/ENST Bretagne, France, http://www.enst-bretagne.fr

ABSTRACT

The increasingly demanding requirements of digital signal
processing applications like multimedia, new generations of
wireless systems, etc. led to the definition of more and more
complex algorithms and systems that are to be efficiently
implemented with the time to market constraint. Today, the
electronic system design community is mainly concerned
with defining efficient System-on-a-Chip (SoC) design
methodologies in order to benefit from the high integration
capabilities of current ASIC and FPGA technologies on the
one hand, and manage the increasing algorithmic
complexity of applications on the other hand. Rapid
prototyping is considered as a key to speed up the system
design. In this context, we have introduced a novel
methodology that efficiently addresses both the algorithmic
complexity and the high flexibility required by the various
application profiles. Our methodology benefits from the
emerging High-Level Synthesis (HLS) tools in a
platform-based approach dedicated to the rapid prototyping
of real-time systems. We show the effectiveness of this
approach with the design of a DVB-DSNG compliant
receiver.

1. INTRODUCTION

Signal and image processing systems are facing heavy
constraints due to the more and more demanding
requirements of applications including computing
complexity and various application profiles. Flexibility is
usually addressed through software solutions where a
variety of programs can be downloaded into a fixed
processor-based platform. However, general-purpose
processors or digital signal processors have limited
computation speed due to the limited number of processing
units available for parallel computation. When higher
computation speed is required, mixed hardware/software
solutions are usually preferred. However, hardware design
is not flexible, time consuming, and consequently
incompatible with both time to market constraint and
efficient design space exploration
As semi-conductor very deep sub-micron technologies ever
get deeper, platforms and prototypes have become
important concepts in the design and validation of electronic
systems to provide correct-the-first-time SoCs. Furthermore
observing that many of the functions are well known and
have already been implemented, the system design flow can
be dramatically accelerated by re-using blocks instead of
re-designing them from scratch. Current design trends give

priority to hardware and software re-use through Virtual
Component (VC) or Intellectual Property (IP) exchange
[1,2]. In this context, platforms aim at providing an IP-reuse
framework for SoC design, thus reduce the IP development
and integration phases.
This paper presents our contribution in the field of digital
signal processor high-level synthesis for a platform-based
approach dedicated to rapid prototyping. High-level
synthesis of hardware intellectual properties frees designers
from designing custom processor cores to reach the
application efficiency required or implementing time
consuming specific interfaces. Hence, it shortens prototype
refinements and then allows a wider system space validation
by rapid prototyping instead of pure (co)simulation or
emulation.
The paper is organized as follow: in section 2 we describe
our contribution in term of rapid prototyping platform
design and synthesis target using high-level synthesis. In
section 3, we describe the rapid prototyping of a radio
communication system involving the DVB-DSNG (Digital
Video Broadcasting - Digital Satellite News Gathering)
standard. Conclusion is presented in section 4.

2. RAPID PROTOTYPING SYSTEM DESIGN FLOW

2.1. System design flow

In the prototyping platform context the design flow consists
in mapping the functional architecture (interconnected
algorithmic functions, e.g. C/C++, Matlab or Ptolemy
specifications for example) of the application to be
implemented onto the targeted platform architecture. The
functional architecture model is thus mapped onto a
heterogeneous HW/SW platform, as represented on figure
1. The software code generation is usually performed using
a compiler that compile a C description into the assembly
code that runs on the targeted processor. For the hardware
parts of a SoC, two design approaches are currently used:
• Hand written design at the RT (Register Transfer) level

allows optimal performance but is associated to
important development and verification time,

• IP core including the design of a wrapper
(communication interface) in order to satisfy from the
one hand the system constraints and the IP
requirements from the other hand [3].

Our approach consists in reducing the hardware IP core
development time by benefiting from the emerging
High-Level Synthesis (HLS) tools. Our methodology aims
at facilitating design, validation and synthesis of IP cores at

the behavioral level, and exploits functional as well as
architectural flexibility by allowing straightforward
instantiation of various RTL architectures – fulfilling
various sets of functional parameters and performance
constraints – starting from a single high-level description of
the behavior.

Inputs

Functional architecture

OutputsAlgorithm

Algorithm

Algorithm

Inputs OutputsHW
Blocks (FPGA…)

SW Processor
(µP, DSP)

High Level
Synthesis

Software
Compilation

Platform architecture

HW
Blocs (FPGA…)

High Level
Synthesis

Figure 1 Architecture mapping including high-level synthesis

2.2. Introduction to high-level synthesis

High-level synthesis [4,5] is analogous to software
compilation transposed to the hardware domain. The source
specification is written in a high-level language (Matlab, C,
SystemC, etc.) that models the algorithmic behavior of a
complex hardware component. An automatic refinement
process allows the mapping of the described behavior onto a
specific technology target depending of targeted constraints.
A design flow including high-level synthesis thus allows
fast algorithm implementations. Thanks to formal proven
automation algorithms, HLS tools generate an RTL
architecture which respects the designer and the system
constraints and which is reliable (error less) compared to a
hand coded design. It claims especially to speed up design
time versus register transfer level hand coding.
HLS is a constraint-based synthesis flow: hardware
resources are selected from technology-specific libraries of
components designed and characterized for a specified
target (depending on the targeted platform). HLS can also be
constrained to limit the hardware complexity (i.e. the
number of allocated resources) and reach a given
computation speed. The high-level synthesis refinement
process follows a top down approach. Four main tasks are
performed: (1) source specification analyze (identify
computations); (2) hardware resources selection and
allocation for each kind of operation; (3) operation
scheduling;
(4) optimized architecture generation, including a datapath
and a control finite-state machine.
Thanks to its high abstraction level, a behavioral description
for HLS can be made customizable through functional
parameters. Each set of supported parameter values and
synthesis constraints thus allows to instantiate a different
dedicated architecture that will fulfill specific functional
requirements and achieve specific performance. As a result,
HLS tools can be seen as a relevant approach for

implementing and benchmarking current DSP algorithms on
different platforms and hardware resources in a rapid
prototyping design process.

A general view of the hardware part design flow including
high-level synthesis and behavioral virtual components is
shown on figure 1.

Mathematical
specification

Choice of
algorithm(s)

Behavioral
refinement

Instantiation and
High-Level Synthesis

RTL synthesis

Physical synthesis

Design Flow

Behavioral IP

Soft IP

Firm IP

Hard IP

Parameters/constraints

Application
parameters

Algorithmic
parameters

System-level
parameters

Architectural
parameters

Technological
parameters

Figure 2 Hardware part design flow based on
virtual component reuse

2.3. HLS design context

Many commercial and academic high-level synthesis tools
can be used: Catapult-C (Mentor Graphics), AccelFPGA
(AccelChip), SystemC Compiler (Synopsys) for
commercials and GAUT, SPARK, Cathedral, etc. for
academics. For our experiments the tool we use is GAUT1.
GAUT is an HLS tool dedicated to Signal and Image
processing applications under real time execution
constraints. This tool performs synthesis under latency
constraint, memory mapping and data communication
consumption/production dates. It thus allows the designer to
accurately stipulate the system interaction and constraints
with the algorithm to be synthesized. The generated
architecture is composed of 3 units: the processing unit
(Data-Path and Control-Unit), the memorization unit and
the communication unit which sends and receives data
from/to the rest of the system. Since rapid prototyping
system design is targeted, the architecture is currently
generated using formal component libraries characterized
for FPGA families (Xilinx and Altera) providing circuit
constraint correctness. This architecture is generated in
VHDL-RTL (direct input for commercial logical synthesis
tools like ISE/Foundation from Xilinx, Quartus from Altera,
etc.).

1 GAUT tool is downloadable after a free registration on LESTER web site
http://lester.univ-ubs.fr:8080

3. DESIGN EXPERIMENT

The proposed methodology has been used in the ALIPTA
(Algorithmic Level IP for Telecom Applications) project.
This project aims at developing a receiver compliant with
the DVB-DSNG standard (Digital Video Broadcasting -
Digital Satellite News Gathering [6]). Maximum cohesion
with DVB-S1 is maintained, such as concatenated error
protection to improve digital communication quality. In
particular, concatenated coding employing an inner
convolutional code (decoded by a Viterbi decoder)
combined with a Reed-Solomon outer code constitutes an
attractive scheme that is commonly encountered in many
applications. Transmissions are allowed from 1.5 Mbps to
72 Mbps.
Starting from a functional architecture written in C, the first
step of the prototyping approach consists in the mapping of
the DVB-DSNG decoding part. Computation metrics at the
functional level aims us to make implementation choices for
each function. Our mapping scheme is shown on figure 3
where the Viterbi and Reed Solomon decoders are
implemented onto hardware blocks (computational
intensive functions) and the synchronization part onto a
software processor (data control dominated functions).

Figure 3 DVB-DSNG decoder mapping

The Sundance platform [7] we used in the ALIPTA project
as a rapid prototyping support is composed of the last
generation of C6x DSPs from TI and Virtex-E FPGAs from
Xilinx. Communications between different functional
blocks are implemented with high throughput SDB links
(200 Mbytes/s) [7].
The IP core integration can be time-consuming and
time-effective i.e. usually requires the design of a specific
communication interface due to incompatible protocols
and/or asynchronous networks. An automatic generation of
the communication interfaces frees the designer from the
interface design. We thus have integrated in the HLS
process the synthesis of the wrappers to seamlessly interface
the synthesized IP with a pseudo-asynchronous
communication network and still obtain synthesizable RTL
VHDL codes whatever the communication scenario is. At
the hardware level the communication between computing
nodes is handled by 4-phases handshaking protocols and

decoupling FIFOs. The handshaking protocols synchronize
computing with communication and the FIFOs enable to
store data in order to overcome potential data flow
irregularities. Handshaking protocols are used either to
communicate seamlessly between hardware nodes or
between hardware and software nodes. Handshaking
protocols are automatically refined by the GAUT tool to fit
with the selected inter-node platform communication
interfaces (bus width, signal names, etc …).
The software code of the functions mapped onto software
processors is initially written in C. Code Composer from TI
is then used to generate the assembly code running on the
C62. Platform specific code has to be written to ensure the
inter processing elements communication. The
communication drivers of the targeted platform are called
inside the interface functions through an application
programming interface (API) mechanism. Thereby we have
developed C++ concurrent processes like I/O drivers.

3.1. HLS-based HW block design

Design synthesis results for the Viterbi and Reed Solomon
decoders are presented in the next sections. Results are
based on a Virtex-E FPGA technology with a 10 ns clock
period, which is the maximum latency of the sequential
operators in the technological library.

3.1.1 Viterbi decoding

The Viterbi algorithm is applicable to a variety of decoding
and detection problems which can be modeled by a
finite-state discrete-time Markov process, such as
convolutional and trellis decoding in digital communication
[8]. Based on the received symbols, the Viterbi algorithm
estimates the most likely state sequence according to an
optimization criterion, such as the a posteriori maximum
likelihood criterion, through a trellis which generally
represents the behavior of the encoder.
The generic SystemC specification of the Viterbi algorithm
coming from the C-functional architecture allowed us to
synthesize dedicated architectures using different sets of
functional/application parameters: state number, survivor
path length and throughput. A piece of synthesis results that
have been obtained for the processing unit is given in figure
4. With the DVB-DSNG standard, the Viterbi decoder is a
64-states decoder. Different throughput constraints have
been tested for this particular case (figure 5) (DVB-DSNG
throughput is from 1.5 Mbps to 72 Mbps).

State Number 8 16 32 64 128

Throughput (Mbps) 44 39 35 26 22
Synthesis Time (s) 1 1 3 9 27

Number of logic
elements 223 434 1130 2712 7051

Figure 4 Viterbi decoder synthesis results

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 10 100

Throughput (Mbps)

N
um

be
r o

f l
og

ic
 e

le
m

en
ts

Figure 5 DVB-DSNG Viterbi decoder complexity

3.1.2. Reed Solomon decoding

Reed-Solomon codes are block error correction codes with
burst error-correcting capabilities that have found
widespread use in storage devices and digital
communication systems [6]. The channel coding scheme in
the DVB-DSNG uses a (204,188) Reed-Solomon code. This
RS code is a punctured version of the RS(255,239) working
on bytes. It is able to correct up to 8 erroneous bytes per
received packet of 204 bytes.
Thanks to the high level of the input specification of the RS
algorithm, several DVB-DSNG RS(204,188) decoder
architectures have been generated. Figure 6 gives the
complexity (number of logic elements) for different

throughput constraints.

Figure 6 DVB-DSNG RS decoder complexity

3.2. DVB-DSNG receiver

In order to validate our methodology, we have implemented
onto the Sundance platform the decoding part of a
DVB-DSNG compliant receiver with a 26 Mbps throughput
constraint. As said previously the generic behavioral
SystemC descriptions of the Viterbi and Reed Solomon IP
cores have been synthesized with the DVB-DSNG
parameter values and this throughput constraint using a HLS
tool. Synchronization and interleaving parts have been
implemented in software on the C62 DSP. For the
interleaving part, a row writing / column reading process
has been used with a 204x204 matrix. Data communication
is supported by 4 SDB links using instantiated SW

communication drivers and the HLS-based automated HW
interface generation. The throughput is bounded by the
synchronization computation speed, e.g. the SW part of our
design. If higher throughput is required, the DSP has to be
changed, for example with a C64 instead of a C62. Thanks
to the behavioral level of the virtual components we use,
only the real time constraint has to be changed for the high
level synthesis of the Viterbi and the RS decoders.

4. CONCLUSION

Traditional methods for rapid prototyping suffer from heavy
limitations that prevent them from efficiently addressing
both the algorithmic complexity and the high flexibility
required by the various application profiles. Our design
methodology shows that C-based design associated with
high-level synthesis helps the designer in a rapid
prototyping objective. It allows fast implementations
fulfilling various sets of system constraints (throughput, …)
and application constraints (number of coding states, …). It
releases the designer from the main implementation
constraints and allows fast prototyping for different
functional parameters and architecture exploration. This
approach has been successfully applied for the design of the
decoding part of a 26 Mbps DVB-DSNG receiver we have
implemented on a Sundance platform.

5. REFERENCES

[1] M. Keating, P. Bricaud, Reuse Methodology Manual for
System-on-a-Chip Design, 3rd edition, Kluwer Academic
Publishers, 2003.

[2] VSIA - Virtual Socket Alliance Interface, http://vsi.org.

[3] J.M. Daveau, G. Fernandes M., T. Ben-Ismail, A.A. Jerraya,
Protocol Selection and Interface generation, Proceedings of IEEE
International Workshop on Hardware/Software Co-Design
(CODES), 2001

[4] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, Steve Y-L. Lin,
High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, Boston, MA, 1992.

[5] J. P.Elliott, Understanding Behavioral Synthesis. A Practical
Guide to High-Level Design, Kluwer Academic Publishers, 2000.

[6] Standard ETSI EN 301 210, Digital Video Broadcasting
(DVB); Framing structure, channel coding and modulation for
Digital Satellite News Gathering (DSNG) , March 1999.

[7] Sundance Multiprocessor Technology,
http://www.sundance.com

[8] A. J. Viterbi, Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm, IEEE Trans. Inform.
Theory, vol. IT-13, pp. 260--269, Apr. 1967.

0

1000

2000

3000

4000

5000

6000

1 10 100

Throughput (Mbps)

N
um

be
r o

f l
og

ic
 e

le
m

en
ts

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Eric Martin
	Christophe Jego
	Pierre Bomel
	Sylvain Huet
	Emmanuel Casseau
	Bertrand Le Gal

