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ABSTRACT 
State of the art antenna array systems require detailed infor-
mation about the channel in order to maximise usable capac-
ity.  Such systems require both detailed analysis and realistic 
simulation based testing.  To date there has been little work 
carried out in the area of directional channel characterisation 
when one of the terminals is in motion.  This paper will de-
scribe a dynamic measurement campaign, conducted at Bris-
tol University, employing antenna arrays, both for a SIMO 
configuration with a ULA, and a MIMO configuration em-
ploying CUBAs.   Associated with the SIMO measurements, 
a modelling strategy was developed for simulating direc-
tional multipath propagation.  The model is based on sto-
chastic processes controlling the birth and death of observ-
able multipath components, the temporal and spatial correla-
tion of multipath components, the variation of the spatial 
and temporal properties of components as the terminal 
moves, and the spectral characteristics of these components.  
The generic framework is fitted to the measurements ob-
tained, and the resulting parameters are presented. 

1. INTRODUCTION 

Radio channel measurement and modelling have been key 
elements in the assessment of communication systems since 
the first hardware simulators appeared.  They are no less 
important today, although the systems that they support are 
infinitely more complex than those produced decades ago.  
Currently, the research focus is on directional channel mod-
els that may or may not incorporate the dynamic evolution 
of the environment.  Such models are essential for assessing 
the potential of smart antenna based systems – key elements 
for support of high bandwidth communication. 

In recent years, many studies have been conducted in 
order to gain a more detailed knowledge of radio propaga-
tion.  Numerous channel models have been reported in the 
literature [1], [2].  A major shortcoming of many of these is 
that they do not consider dynamic behaviour of the channels, 
concentrating instead on a statistically stationary description 
of the channel.  This can be attributed to the lack of dynamic 
measurement campaigns to support realistic modelling of a 
dynamic channel. 

This paper describes work that has been carried out by 
Bristol University and The University of Edinburgh in the 
UK under the auspices of the Virtual Centre of Excellence in 
Mobile Communications (MobileVCE).  Channel measure-
ments were conducted by Bristol University, encompassing 
both dynamic SIMO and dynamic MIMO measurements, 
while the channel modelling work was carried out at The 
University of Edinburgh, principally focussing on the Dy-
namic SIMO data.  Work to extend the model to the dynamic 
MIMO case is currently underway. 

The remainder of the paper is organised as follows: Sec-
tion 2 will describe the measurement equipment and opera-
tion, and section 3 the key parameters extracted from these 
measurements.  Section 4 will introduce the modelling work, 
while section 5 will draw the paper to a close. 

2. CHANNEL MEASUREMENTS 

2.1 Measurement setup 
Two sets of measurements were obtained for channel 

modelling purposes, a set of single input multiple output 
(SIMO) measurements, and a set of multiple input multiple 
output (MIMO) measurements.  Both sets were conducted 
using a Medav RUSK BRI channel sounder operating at 5.2 
GHz [3].  A periodic multitone signal with a bandwidth of 
120 MHz and repetition period of 0.8 µs was used.  The fre-
quency domain channel response was calculated online and 
stored on the sounder’s hard disk for post-processing. 

For the SIMO measurements, the mobile transmitter 
(TX) used an omni-directional antenna transmitting at an 
input power of +26 dBm with a stationary receiver (RX) 
comprising a uniform linear array (ULA).  The ULA had 8 
active dipole-like elements spaced by half a wavelength and 
2 dummy elements at both ends to balance the mutual cou-
pling effects.  The effective azimuth visible range of the ULA 
was 120º. 

For the MIMO measurements, two identical 16-element 
uniform circular arrays with dual-polarised (horizontal and 
vertical) stacked patch antenna elements were used for both 
the transmitter and receiver.  For the measurements con-
ducted, only the vertical polarisation was considered.  The 
ideal radius of the circular arrays was found to be 1.28λ.  



Spatial calibration of all array systems was carried out in an 
anaechoic environment prior to measurements being con-
ducted. 
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The dynamic measurements were conducted by slowly 
pushing the TX towards the RX using a trolley and wireless 
telemetry equipment specially developed for this dynamic 
channel sounding exercise.  The trolley had 2 odometers on 
the left and right wheels that enable precise logging of the 
distance moved.  For the SIMO measurement campaign, the 
sounder was configured to record 20 snapshots consecutively 
for every 18 mm moved. A snapshot consists of 8 complex 
channel response measurements in the frequency domain 
across the 8-element ULA.  For a multitone signal period of 
0.8 µs, the time for recording a full SIMO snapshot was 12.8 
µs [3].  Therefore, the total recording time of 1 Fast Doppler 
Block (FDB) was 256 µs, which was well within the coher-
ence time of the channel and also the 2 ms Medium Access 
Control (MAC) frame of the HIPERLAN/2 standard.  A FDB 
in this measurement consists of a block of 20 consecutive 
SIMO snapshots. 

 
2.2 Measurement Environments 

One set of measurements were conducted in a highly 
cluttered modern office environment with standard office 
furniture, wooden shelves (height 1.83 m) and metal cabinets 
(height 1.3/1.85 m) present.  The tables were separated by 
soft boards (height 1.3/1.5 m).  The floor was carpeted with 
aluminium backed floor tiles and the walls were brick and 
concrete.  Other environments included a research laboratory 
with aluminium frame benches, an open foyer, and a corridor.  
Full details of all of the conducted measurement scenarios 
are given in [4].  For SIMO measurements, the mobile TX 
was pushed along the dotted path and the RX was fixed at a 
position labelled as “RX” (F ).  In the MIMO case, it is 
the TX which is fixed, and the RX is mobile (F ).  The 
height of the fixed end was 1.7/2.1/2.5/3.0 m (depending on 
ceiling height), while the height of the mobile was set to 
1.7 m.  The arrow indicates the orientation of the ULA 
broadside direction.  Measurements were conducted during 
both normal office and out of office hours. 
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3. KEY PARAMETERS EXTRACTED FROM 
MEASUREMENTS 

The channel model parameters are based upon data from the 
measurement campaigns described above.  In order to use 
such data it is necessary to extract multipath component 
parameters from the data, and then to translate these into 
model parameters. 

 
3.1 Multipath Channel Parameter Estimation 

The super-resolution frequency domain Space-
Alternating Generalised Expectation maximisation (FD-
SAGE) algorithm is used to detect and estimate the the num-
ber of multipath components (MPCs) and the complex path 
gain, time-of-arrival (TOA) and angle-of-arrival (AOA) of 
each of these [5].  The channel parameters vary as a function 
of mobile displacement, thus a set of varying parameters is 
obtained from the measurement data.  The FDB index, n, 

corresponds to the MT displacement where the separation 
between FDBs is equivalent to 18mm.  The total number of 
FDBs, N, varies according to the total distance travelled by 
the trolley.  Typically, N lies between 500 and 850. 

When dealing with the MIMO data, the added complica-
tion using the SAGE process is that its iterative nature does 
not scale well to the increased data size.  In order to reduce 
the time required to perform the analysis, a hybrid-space 
SAGE (HS-SAGE) algorithm was developed [6]. 
3.2 Joint Parameter Estimation Results 

Analysis of the joint parameter distributions was per-
formed on the MIMO data.  All array rotations were normal-
ised in post-processing such that the transmitter and receiver 
0º directions faced each other at all measurement positions. 
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Figure 1: Office environment in SIMO configuration

Figure 2: Research Laboratory in MIMO configuration 



The direction of departure and direction of arrival distri-
butions are shown in F , and indicate that for the in-
door environment studied, there is a bias for multipath com-
ponents to appear around the 0º angle.  This would indicate 
that despite the clutter, an assumption of paths arriving 
equally from all angles is invalid for such environments. 
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Correlations between DoD and DoA can be observed 
when their joint distribution is plotted, as shown in F .  
The largest peak corresponds to the direct path between the 
transmitter and receiver, and there are also substantial peaks 
corresponding to back-wall reflections, appearing at angles 
of 180º.  When the joint power density is considered (F

), it becomes clear that not only are these directions the 
most commonly observed, but they also correspond to the 
most substantial contributions to overall received power. 

 
3.3 Identification of Path “Birth” and “Death” 

In order to model the dynamic nature of the channel, a 
birth death model is used to describe the distance varying 
nature of the multipath propagation.  The active paths in each 
particular FDB can be classified as new or inherited paths.  
New paths or births are defined as paths that first appear in 
that particular FDB, while inherited paths are defined as 
paths that existed in the previous FDB.  A death is defined as 
an inherited or new path that does not appear in the next 
FDB. 

In order to identify the number of births, LB, and deaths, 
LD, in each FDB, we introduced the terms active path (AP), 
active region (AR) and uncertainty region (UR).  The area of 
the AR is determined by the intrinsic temporal and angular 
resolution of the measurement system, namely the Rayleigh 
resolution [7].  Here, the temporal and spatial coverage area 
of the AR is set to be δττ ±A  and uu A δ± , respectively, 
where Aτ  and  (the spatial domain here is expressed in u-
space, defined as 

Au
φsin=u ) form the centroid of the AR, 

while δτ  and uδ  are chosen to be 9ns and 0.25, respec-
tively. 

Multipath components may exist in one FDB, disappear 
for one or more FDBs, and then reappear.  The temporary 
disappearance of these paths may be due to the fact that they 
are in a deep fade position, i.e. a null in the resultant complex 
path gain of the cluster.  Thus, if paths appear, disappear and 
reappear within a finite local region, they can still be as-
sumed to be within their lifespan.  A distance of three wave-
lengths was chosen as a reasonable range within which to 
consider that a multipath component may be in a deep fade. 

4. DYNAMIC CHANNEL MODEL 

The channel model comprises two key components, a static 
directional component that describes the location of multi-
path components in delay and angular space, and a dynamic 
component that models the behaviour of these componentts 
over time. 

 
4.1 Static model 
The measured time and angle of arrival of multipath compo-
nents were found to form clusters in the spatio-temporal do-
main [8].  These were analysed using joint distribution func-
tions, an example of which is shown in F .  On aver-
age, 9 clusters were identified in the office environments, and 
within these clusters, the number of multipath components is 
approximated by an exponential distribution, with clusters 
typically having fewer than five multipath components. 
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Figure 5: Joint power density DoD/DoA 

Figure 4: Joint distribution of DoD/DoA 
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Figure 3: Aggregated direction of arrival (DoA) and direc-

tion of departure (DoD) distributions 



 

p00 

p10 

p11 

p01 

p02 

p12 

p03 

p13 

p33 

p23 

p22 

p31 

S0 S1 S2 S3

p30 

p20 

p21 p32 

Jo
in

t 
P

D
F

2

4

6

8

10

12

14

16

x 10
−5

0

50

100

150

−50

0

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−4

Cluster TOA , T [nanosec]

Joint PDF for the Cluster Position in the Office Environment

Cluster AOA , Φ [deg]

Jo
in

t 
P

D
F

, f
(T

,Φ
)

Figure 6: Joint PDF of cluster position in the office envi-
ronment. 

Figure 7: 4-state Markov model 

By employing two joint PDFs to describe multipath compo-
nent location in the spatio-temporal domain, a two stage 
process results.  The correlation between the spatial and tem-
poral domains is described by the joint PDF of cluster posi-
tion, f(Τk,Φk), and the joint PDF of MPCs position within a 
cluster, f(τkl,φkl). 
Using the Anderson-Darling goodness-of-fit test, the cluster 
position PDF is found to be described by an exponential dis-
tribution for the delay, and a Gaussian distribution in angle.  
Thus 
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The mean, µΦ|Τ of f(Φk|Τk) was constant at 0° (i.e. the LOS 
direction) while the standard deviation, σΦ|Τ, for line of sight 
environments, varies according to a Weibull distribution, 
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where the parameters are found using non-linear regression. 
Within the clusters the joint PDF, f(τkl,φkl), is found to be 
separable with time of arrival again being described by an 
exponential distribution, but the angle of arrival being de-
scribed by a Laplacian distribution, 
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The parameters are detailed in  for line of sight 
(LOS), obstructed line of sight (OLOS) and non-line of sight 
(NLOS) environments. 

Table 1

Table 1: Static model parameters 

 
Parameter LOS OLOS NLOS 
µΤ 40.9ns 41.2ns 52.9ns 
aΦ|tn 50.2   

Parameter LOS OLOS NLOS 
bΦ|tn 1.54   
cΦ|tn 67.7   
σ φ |Τ 3.9º 9.0º 7.3º 
µt 13.8ns 22ns 33.4ns 

 
4.2 Dynamic model 

A 4-state Markov channel model (MCM) is proposed in 
order to model the dynamic evolution of paths when the MT 
in motion.  At any time instant, the propagation channel can 
only be operating in one of the four possible states, where 
each of the state may be defined as follows: 

• S0 – No “births” or “deaths” 
• S1 – 1 “death” only 
• S2 – 1 “birth” only 
• S3 – 1 “birth” and 1 “death” 
Four states are required in order to account for the corre-

lation that exists between LB and LD.  F  illustrates the 
state transition diagram of the 4-state MCM. 
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The transitions between states is defined by the probabil-
ity matrix, P, given by 

Figure 8: Distance-variant power-azimuth density spec-
trum (DV-PADS) 
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presence of a LOS path causes the channel sounder to miss 
paths with relatively low powers as the dynamic range of the 
channel sounder is finite (i.e. 40 dB).  As diffuse reflections 
dominate in the OLOS and NLOS scenarios, the strongest 
paths detected by the channel sounder have approximately 
the same power.  Therefore, paths with relatively low power 
can still be detected by the channel sounder provided they 
fall within the dynamic range. 
Under the LOS condition, M = 3 is sufficient, while for the 
OLOS and NLOS cases, at least M = 8 is required in order to 
ensure P converges.  These values were verified by simula-
tion results by increasing M until the value of P did not 
change significantly.  For example, under the LOS condition 
it was observed that all elements of P estimated at M = 3 and 
M = 4 (i.e. P3 and P4, respectively) do not vary by more than 
15%.  Increasing M further does not alter the value of P sig-
Figure 9: Distance-variant power-delay density spectrum 
(DV-PDDS)
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here i and j are state indices, and  is the probability that 
 process currently in state i will occupy state j after its next 
ransition. 

ijp

nalysis of the measurement data shows that multiple births 
nd deaths can occur between two consecutive FDBs.  In 
rder to account for this, a multiple step (M-step) MCM is 
roposed.  By applying the 4-state MCM M times, both the 
orrelation between LB and LD as well as multiple births and 
eaths will be achieved. 

.3 Model parameters 
he measurement data were fitted to (1) through solving a set 
f 29 over-determined nonlinear equations.  The resulting 
arameter set describes the 4-state MCM parameters required 
o generate a set of multipath births and deaths that have 
imilar characteristics to the measured data itself.  F  
hows the distance-variant power-azimuth density spectrum 
DV-PADS) and F , the distance-variant power-delay 
ensity spectrum (DV-PDDS) for a sample measurement file.  
he DV-PDDS shows that the TOA of the strongest LOS 
omponent increases as the trolley moves along its trajectory, 
orresponding to the trolley moving away from the RX.  Also 
bservable in the graph are the higher order reflections.  The 
ajor first order reflection is due to a reflection off the wall 
ith the entrance door.  This accounts for the decrease in 
OA as the trolley moves further away from the RX.  On the 
ther hand, the major second order reflection is due to the 
ignal being first reflected by the wall behind the RX (first 
rder), and then reflected again by the wall with the entrance 
oor (second order) before arriving at the RX. 
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nifica

NLOS

he figure also illustrates the appearance and disappearance 
f multipath components in the angular temporal plane.  In 
eneral, larger values of LB and LD were obtained for the 
LOS and NLOS scenarios when compared to the LOS sce-
ario.  This is mainly due to a larger total number of multi-
ath components in OLOS and NLOS environments.  The 

ntly.  Thus, M = 3 is used as the upper limit of the step 
size to generate P for the LOS case.  A similar observation 
was made for the OLOS and NLOS cases where the differ-

ce between P8 and P9 is insignificant.  Therefore, M = 8 is 
used as the upper limit of the step size for the OLOS and 

 cases. 
An assessment of the performance of this approach can be 

made by examining the total number of active paths for a 
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Figure 10: Total number of multipath components, meas-

ured  and simulated 
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angle of arrival, and is well modelled by a truncated Gaus-
sian distribution, shown as an inset in Figure 10. 
In order to model the power variation of a path within its 
lifespan, its power spectral density (PSD) is studied in order 
to determine an appropriate filter that is able to reproduce a 
set of random signals that exhibit the similar spectral charac-
teristics. F  illustrate the power varia-
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Figure 11: Variation of multipath component angle and 
time of arrival 
iven scenario.  F  shows the number of paths de-
ected in the measurement results, and a simulation using the 

arkov parameter set extracted from this measurement envi-
onment.  Similar trends in the total number of multipaths 
an be observed in both measured results and in simulation 
esults, indicating a certain degree of confidence that the non-
inear optimisation has produced results that are representa-
ive of the practical environment. 
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.4 Variation of multipath components within their life-
span 

uring the lifespan of a multipath component, its time of 
rrival, direction of arrival and power will vary due to mo-
ion in the environment.  This is a key element of the dy-
amic nature of the channel, and will be different from the 
raditional Rayleigh fading based approaches, which are 
ased upon the concept of multiple coincident multipath 
omponents. 
n order to characterise the component variation, the meas-
rement results were examined to find those multipath com-
onents that had the longest lifetimes.  These could be used 
n the analysis process as their longevity contributed to more 
tatistically significant data on how components vary over 
ime. 
irstly, the time and angle of arrival were examined to de-

ermine how these varied jointly for a given multipath com-
onent: joint estimation is used as correlation between time 
f arrival and angle of arrival has already been established.  

 shows a scatter plot of all of the long lived multi-
ath components’ parameters for an entire measurement run.  
ith the knowledge of the FDB number for each of these 

oints, the variation of a single multipath component can be 
dentified.  Drawn on this plot are the best fit lines indicating 
he direction of variation of multipath components in this 
patio-temporal plane. 
sing a definition of a spatio-temporal vector, ω, which 
escribes the angle between the angle of arrival axis and the 
est line fit in F , a description of how multipath 
omponents vary can be defined.  It is found that the spatio-
emporal vector is not dependent upon time of arrival or 
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nent 
on of a single path selected from the measurement data and 
s corresponding PSD (in logarithmic scale), respectively.  
hese figures show that only low frequency components are 
gnificant.  Several other paths were also investigated and 
milar PSDs were observed.  This implies that the power 
ariation of path within its lifespan can be well-modelled by 
 simple LPF and a white noise source which exhibits a simi-
r frequency response.  The power variation of a path within 
s lifespan can be caused by several mechanisms.  Firstly, 
ue to the motion of the MT along its trajectory that changes 
e reflection coefficients of some media.  For example, as 
e trolley moves along the trajectory in the office environ-
ent, reflections can be due to the walls, furniture, doors or 

ven people in the surroundings.  Thus, the building structure 
an cause a path to fade within its lifespan.  Secondly, due to 
e finite spatio-temporal resolution of the measurement sys-
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5. CONCLUSIONS 

This paper has described a measurement and a modelling 
approach for producing detailed dynamic channel models 
that can be employed in antenna array based simulation sys-
tems.  The measurement system produces data in a form that 
allows for joint distributions between angle of arrival, angle 
of departure and time of flight to be formulated, the result-
ing distributions being then used to create a channel model.  
MIMO measurements have indicated that there is strong 
correlation between angle of departure and angle of arrival 
of multipath components; this information should be incor-
porated into future channel models in order to better test 
practical system implementations.  A channel modelling 
approach has been described, with data fitting it to SIMO 
measurements, showing how correlated time of arrival and 
angle of arrival information can be used to generate realisa-
tions of multipath channels. 

[8] C. C. Chong, C. M. Tan, D. I. Laurenson, S. McLaugh-
lin, M. A. Beach, A. R. Nix, “A New Statistical Wideband 
Spatio-Temporal Channel Model for 5GHz Band WLAN 
Systems”, IEEE J. Select. Areas Commun., vol. 21, no. 2, pp. 
139-150, Feb. 2003. 

6. ACKNOWLEDGEMENTS 

The work reported in this paper has formed part of the Wire-
less Access area of the Core 2 Research Programme of the 
Virtual Centre of Excellence in Mobile & Personal Commu-
nications, Mobile VCE, www.mobilevce.com, whose fund-
ing support, including that of EPSRC, is gratefully acknowl-
edged.   Fully detailed technical reports on this research are 
available to Industrial Members of Mobile VCE.  Chia Chin 
Chong would also gratefully acknowledge funding from a 
Vodafone Scholarship. 


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mark A. Beach
	Chia Chin Chong
	Chor Min Tan
	David Irvine Laurenson



