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ABSTRACT
Decomposition of multicomponent noisy signals is considered
in the paper. A novel decomposition algorithm is presented
and applied to the synthetic and real radar signals. The algo-
rithm is based on time-frequency analysis and its eigenvalue
decomposition. It has been statistically shown that the pre-
sented algorithm produces satisfactory results even in a very
low signal to noise ratio. Obtained results are robust to the
algorithm parameters.

1. INTRODUCTION

Eigenvalue decomposition of the inverse discrete rearranged
Wigner distribution (WD) is used in signal synthesis [2].
If the considered two-dimensional function is a valid WD
then this procedure produces exactly one eigenvalue differ-
ent from zero, with eigenvector corresponding to the signal,
up to a constant phase shift. Time-frequency representa-
tion referred to as the S-method has a property that, under
certain assumptions, its value for multicomponent signals is
equal (or very close) to the sum of the WDs of each com-
ponent separately [5, 6]. In this paper we have proposed an
algorithm that combines two previous facts. We introduced
eigenvalue decomposition of the inverse discrete rearranged
S-method. It can produce eigenvectors proportional to the
signal components. In this way we achieved decomposition
of a multicomponent signal.

After a review of the WD based synthesis in Section 2,
Section 3 introduces and presents the decomposition algo-
rithm. In Sections 4 and 5 numerical and statistical analysis
of the algorithm on signals, including signals with a high
amount of noise and real radar signals, are performed. An
extended and detailed version of this algorithm is described
in [7].

2. THEORY

A discrete form of the Wigner distribution is defined by [1,
3, 4, 9]

WD(n, k) =

N/2X
m=−N/2

f(n+m)f∗(n−m)e−j
2π
N+1

m(2k), (1)

where we assumed that the signal f(n) is time limited within
|n| ≤ N/2 and omitted a constant multiplication factor of 2.
Inversion relation for the Wigner distribution reads

f(n+m)f∗(n−m) = 1
N+1

N/2X
k=−N/2

WD(n, k)ej
2π
N+1

m(2k).

After substitutions n1 = n+m and n2 = n−m we get

f(n1)f
∗(n2) =

1
N+1

N/2X
k=−N/2

WD(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2).

(2)

Here, we assumed that an appropriate interpolation is done,
in order to calculateWD((n1+n2)/2, k) for cases when (n1+
n2)/2 is not an integer. Denoting by R(n1, n2) the right-
hand side of the previous equation, we get

R(n1, n2) = f(n1)f
∗(n2). (3)

Matrix form of (3) reads

R = f(n)f∗(n), (4)

where: f(n)is a column vector whose elements are the signal
values, f∗(n) is a row vector (Hermitian transpose of f(n))
and R is the matrix whose elements are R(n1, n2).

The eigenvalue decomposition of matrix R reads

R = QΛQT =
N+1X
i=1

λiui(n)u
∗
i (n), (5)

where λi are eigenvalues and ui(n) are eigenvectors of the
matrix R. By comparing (4) and (5), it follows that the
matrix R can be decomposed by using only one eigen-
value different from zero. Having in mind this fact we have
f(n)f∗(n) =λ1u1(n)u

∗
1(n), resulting in λ1 = Ef , where Ef

is energy of the signal f(n).
Eigenvector u1(n) is equal to the signal vector f(n)up

to the constant amplitude and phase factor. It means that
matrix R, through its eigenvalue decomposition (5), can be
used to check if an arbitrary 2D functionWD(n, k) is a valid
Wigner distribution.

The same relations can be used in signal synthesis: start-
ing from a given function WD(n, k), calculating matrix R,
performing eigenvalue decomposition (5) and using the first
(largest) eigenvalue and corresponding eigenvector we obtain
signal such that its Wigner distribution is a valid Wigner dis-
tribution with minimal mean square error as compared to the
given arbitrary function WD(n, k), [2].

2.1 S-method
A definition of the STFT is

STFT (n, k) =

N/2X
m=−N/2

f(n+m)w(m)e−j
2π
N+1

mk. (6)

where w(n) is time window.
The S-method is defined as [5]

SM(n, k) = 1
N+1

LX
l=−L

STFT (n, k + l)STFT ∗(n, k − l) (7)

Basic property of the S-method is that it can produce time-
frequency representation of a multicomponent signal equal
to the sum of the WD of each component, avoiding cross-
terms. Note that the spectrogram can be obtained for L = 0
and the WD for L = N/2 [5].



Proposition 1 : Consider a multicomponent signal

f(n) =
MX
i=1

fi(n),

where fi(n) are monocomponent signals. Assume that the
STFT of each component lies inside the region Di(n, k),
i = 1, 2, ...,M . Denote the length of i − th region along k,
for a given n, by 2Bi(n), and its central frequency by k0i(n).
The S-method of f(n) is equal to the sum of the Wigner dis-
tributions, WDi(n, k), i = 1, 2, ...,M , of each signal’s com-
ponent separately,

SM(n, k) =
MX
i=1

WDi(n, k), (8)

if the regions Di(n, k), i = 1, 2, ...,M , do not overlap,
Di(n, k) ∩Dj(n, k) = ∅ for i 6= j, and the number of terms
L in (7), for a point (n, k), is defined by:

L(n, k) =

½
Bi(n)− |k − k0i(n)| for (n, k) ∈ Di(n, k)
0 elsewhere .

(9)
Proof is very similar to the one provided for the continuous
S-method case. It can be found in [6].
Note: If we choose constant number of terms in (7) such that

L ≥ maxn,k{L(n, k)} we get SM(n, k) =
MP
i=1

WDi(n, k), if

the regions Di(n, k), i = 1, 2, ..,M , are at least 2L apart
along the frequency axis, i.e., |k0i(n)− k0j(n)| > Bi(n) +
Bj(n) + 2L, for each i, j and n.

This is the S-method with constant value of L, as it
was originally introduced in [5] and as it will be used in this
paper. The signal dependent method (9) would be more ac-
curate, but also more complex. Constant number of terms is
used here in numerical implementation since it is much sim-
pler for implementation, producing satisfactory and robust
results.

3. DECOMPOSITION ALGORITHM

Let us consider multicomponent signal

f(n) =
MX
i=1

fi(n),

and assume that the signal components satisfy conditions
mentioned in the Proposition 1. Then the S-method of the
considered signal leads to

SM(n, k) =
MX
i=1

WDi(n, k). (10)

Let us introduce the notation

RSM (n1, n2) =
1

N+1

N/2X
k=−N/2

SM(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2).

(11)
If we write inversion formula for each WD (2) in (10),

after substitution in (11), we obtain

RSM =
MX
i=1

fi(n)f
∗
i (n). (12)

Using eigenvalue decomposition of the matrix RSM , whose
elements are RSM(n1, n2), we get

RSM =
N+1X
i=1

λiui(n)u
∗
i (n). (13)

As in the case of Wigner distribution, we can conclude that
λi = Efi , i = 1, 2, ...,M and λi = 0 for i =M +1, ..., N , i.e.,

λi =
MX
l=1

Eflδ(i− l). (14)

The eigenvectors ui(n) will be equal to the signal compo-
nents fi(n), up to the phase and amplitude constants. Am-
plitude constants are again contained in the eigenvalues λi.
Note that it is assumed that signal components do not over-
lap in the time-frequency plane what implies their orthogo-
nality. Moreover if all nonzero eigenvalues are different from
each other, then it can be easily proved that decomposition
(13) is unique and that it can be related with (12) term by
term. Thus, the reconstructed signal can be written as

frec(n) =
MX
i=1

√
λiui(n)

It is equal to the original signal, up to the phase constant
in each component.

When there exists a very strong disturbing signal, like
sea-clutter in HF radar signal, we can omit the first,
strongest component, and define reconstructed signal as

frec(n) =

M1X
i=2

√
λiui(n)

where M1 is the expected number of components.

3.1 Calculation procedure
• Step 1. Choose appropriate time window w(n).
• Step 2. Calculate the STFT of the zero-padded and over-
sampled signal by factor 2. Oversampling is neccesery in
order to avoid noninteger indices in (11).

• Step 3. Choose value of L according to the conditions
mentioned in Proposition 1.

• Step 4. Calculate the S-method of the signal according
to (7) for a given L.

• Step 5. Calculate matrix RSM according to (11).
• Step 6. Decompose RSM into eigenvectors and eigenval-
ues.
FirstM eigenvectors, with corresponding eigenvalues are

separated signal components. We can reconstruct whole sig-
nal by summing extracted components.

3.2 Examples
Let us consider four component signal, where each com-
ponent is a Gaussian chirp, contaminated with a white
Gaussian complex noise ε(n)

x(n) =
4X

k=1

Ake
jωk(n−dk)+jak

(n−dk)
2

2 e−
(n−dk)

2

256 + ε(n)

where d1 = d2 = −64, d3 = 0, d4 = 64, , ω1 = ω4 = 0,
ω2 = − 3π

4
, ω3 =

3π
4
, a1 = a3 =

1
256π

, a2 = a4 = − 1
256π

,and
−128 ≤ n ≤ 127. Note that the signal components are
separated in time-frequency plane.



In the noiseless case we will assume that ε(n) = 0 and
A1 = 1.3, A2 = 1.2, A3 = 1.1 and A4 = 1.0. Rectangular
window of 64 samples length is used and L = 36 is chosen
in order to satisfy conditions form Proposition 1. The re-
sults are presented in Table 1 and Fig.1. Energy of each
signal component and corresponding eigenvalue is presented
in Table 1. Note that eigenvalues highly corresponds to the
components energies. Fig.1 presents spectrogram of the orig-
inal signal, TFRs of the first four eigenvectors and TFR of
the reconstructed signal.

Component 1 2 3 4
Energy 67.8 57.7 48.5 40.1
Eigenvalue 67.5 57.5 48.3 39.9

Table 1: Component energies and corresponding eigenvalues

The decomposition algorithm is applied to the consid-
ered signal with A1 = A2 = A3 = A4 = 1 for signal to
noise ratio 0dB (Fig.2) and −4dB (Fig.3). Hanning window,
128 samples length and L = 16 is used in booth cases. In
booth cases all signal’s components are separated, and re-
constructed signal is obtained without noise in the parts of
the time-frequency plane where there is no signal’s compo-
nents. In noisy cases equal components energies can be used
because high noise introduce different eigenvalues in the de-
composition process, avoiding possible ambiguity.

4. APPLICATION TO THE ANALYSIS OF HF
RADAR SIGNALS IN STRONG CLUTTER

Proposed algorithm is also applied to the real radar signals.
The signals considered here are experimental plane data, as
used in [8]. The plane is a King-Air 200 performing maneu-
vers, tracked by a high frequency surface wave radar (HF-
SWR), using a 10-element linear receiving antenna array.
The radar carrier frequency is 5.672MHz and the pulse rep-
etition frequency is 9.17762 Hz. Each trial corresponds to a
block of 256 pulses. Therefore the CIT (coherent integration
time) of each signal is 27.89 s. Here we deal with week target
signal and very strong clutter (in the middle of the frequency
axis). Since in this case signals components have long du-
ration, rectangular window 256 samples length is applied,
and L = 32 is chosen. Second eigenvector is used as recon-
structed signal in all cases. In order to present booth signals
in spectrogram (upper left graphics) high values of clutter
component are cut off. Results are presented in Fig.4-6. As
we can see in all cases target signal is successfully detected.
More results and detailed analysis of radar signals can be
found in [7, 8].

5. NOISE ANALYSIS

If the analyzed signal is corrupted with noise, then assump-
tion that only M eigenvalues are different from zero is not
valid. On the other hand noise components are distributed
over all N eigenvectors.

Described decomposition algorithm is analyzed for vari-
ous SNR and with different algorithm parameters (L in the
S-method calculation and window length in the STFT cal-
culation). The results are shown in tables 2 and 3. For each
combination of SNR, L and window length h algorithm is
repeated 100 times, giving total of 400 components for de-
tection. The percentage of missed components is shown in
tables and used as measure of algorithm robustness.

It is shown that decomposition algorithm is very robust
to the parameters values. Heuristic analysis gives some es-
timations of parameter values. Namely if we want to obtain
Wigner distribution than the parameter L should be equal
to the half of the component frequency support (in discrete
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Figure 1: Spectrogram, reconstructed signal and TFRs of
the first four eigenvectors - noiseless case
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Figure 2: Spectrogram of noisy signal, eigenvectors TFRs
and TFR of the reconstructed signal for 0dB SNR
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Figure 3: Spectrogram of noisy signal, eigenvectors TFRs
and TFR of the reconstructed signal for −4dB SNR.
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Figure 4: Decomposition of a real HF radar signal in a strong
sea clutter (realization 1)
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Figure 5: Decomposition of a real HF radar signal in a strong
sea clutter (realization 2)
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Figure 6: Decomposition of a real HF radar signal in a strong
sea clutter (realization 3)

SNR L = 8 L = 16 L = 32 L = 64

0dB 3.50% 0.00% 0.00% 0.00%
-2dB 6.50% 0.00% 0.50% 0.00%
-4dB 10.00% 3.25% 2.50% 3.50%
-6dB 20.25% 14.75% 11.50% 7.50%
-8dB 35.50% 29.50% 22.75% 21.00%

Table 2: Sensitivity of the proposed algorithm to the choice
of L for various SNR. Window length is 128 samples.

SNR h = 160 h = 128 h = 64

0dB 0.25% 0.00% 0.50%
-2dB 0.50% 0.50% 0.75%
-4dB 3.50% 2.50% 4.50%
-6dB 16.25% 11.50% 14.00%
-8dB 28.00% 22.75% 33.25%

Table 3: Sensitivity of the proposed algorithm to the choice
of window length h for various SNR with L = 32

domain). Time window in STFT calculation should be long
enough so the whole component is covered by window. On
the other hand very large window can combine two compo-
nents in one eigenvector.

6. CONCLUSION

Proposed decomposition algorithm is theoretically derived,
applied to the synthetic signals with and without noise and
to the real radar signals. In all considered cases decomposi-
tion is successfully done. It is shown that choice of algorithm
parameters does not have high influence to the decomposi-
tion process. Results obtained in noiseless case numerically
proves theoretically obtained conclusions.
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