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ABSTRACT
Commonly used technique for the ISAR signal analysis is a
two dimensional Fourier transform. In the cases when the
line of sight projection of target point velocity changes or
the movement within the coherent integration time is non-
compensated then the Fourier transform produces blurred
and distorted images. Standard techniques for these kind
of problems are in movement compensation or in the time-
frequency analysis application. Both of them are computa-
tionaly intensive. Here, we will present a numerically simple
S-method based approach. This approach improves read-
ability of ISAR images, with only a slight correction of the
existing Fourier transform based algorithms. Implementa-
tion is presented and tested on common benchmark signals.

1. INTRODUCTION

When radar transmits an electromagnetic signal to a tar-
get, the signal reflects from it and returns to radar. The
reflected signal, as compared to the transmitted signal, is
delayed, changed in amplitude, and possibly shifted in fre-
quency. These parameters of the received signal contain in-
formation about the target’s characteristics. For example,
delay is related to the target’s distance from the radar, while
the target’s velocity is related to the shift in frequency. In-
verse synthetic aperture radar (ISAR) is a method for ob-
taining high resolution image of a target based on the change
in viewing angle of the target with respect to the fixed radar.
Common technique used for the ISAR signal analysis is the
two dimensional Fourier transform. Fourier transform appli-
cation on the ISAR signal of a point target results in a highly
concentrated function at a point whose position corresponds
to the range and cross range values [7, 8]. Within longer
time intervals the target point velocity changes, meaning
that corresponding frequency changes, that spread Fourier
transform, blurring information about the cross range. The
rotation itself can be nonconstant, increasing the radar im-
age distortion. In addition to these disturbances in the radar
image, target motion can also be three dimensional, changing
the velocity projection along the target-radar line in a very
complex way. In order to deal with this kind of problems,
instead of the standard Fourier transfer, time-frequency rep-
resentations that can track spectral content in time, should
be used. One approach is based on the motion compensa-
tion by using adaptive time-frequency representation with
additional phase compensation factor [7, 8]. It is computa-
tionally extensive. The other approach is based on the usage
of the quadratic time-frequency representations [1].

In this paper we propose that instead of the Fourier
transform, the S-method based calculation is used. Like the
Wigner distribution, this distribution can produce fully con-
centrated representation for linear changes of the frequency,
at the same time being cross-terms free or with significantly
reduced cross-terms [3, 4, 5, 6]. Note that this distribution
is numerically very simple and requires just few more oper-
ations than the standard Fourier transform. This method
works on the whole set of data. It does not split the ISAR

image into a time series of ISAR images. This is a signifi-
cant advantage over the other quadratic representations and
linear transforms based on signal dechirping and multipara-
meter search procedures.

2. ANALYTIC CW RADAR SIGNAL MODEL

For the analytic model derivation, consider a continuous
wave (CW) radar that transmits signal in a form of coherent
series of chirps [1]

vp(t) =

½
exp(jπBfrt

2) for 0 ≤ t ≤ Tr
0 otherwise (1)

where Tr is the repetition time and fr = 1/Tr is the repeti-
tion frequency and B is the signal bandwidth. In one revisit
transmitted signal consists of M such chirps

v(t) = exp(−jω0t)
M−1X
m=0

vp(t−mTr),

where ω0 is the radar operating frequency. Total signal du-
ration is Tc = MTr. It is called coherent integration time
(CIT). The received signal is mixed (multiplied) with the
complex-conjugate of the transmitted signal, shifted in time.
One component of the received signal, after a low-pass filter-
ing, is

q(m, t) = σ exp(jω0
2d

c
) exp(−j2πBfr(t−mTr)

2d

c
), (2)

where σ is the reflection coefficient, d is the radar to target
distance and c is the propagation (light) speed.

3. FOURIER TRANSFORM IN ISAR

Two-dimensional (2D) Fourier transform of the received sig-
nal q(m,n) is

Q(m0, n0) =
M−1X
m=0

N−1X
n=0

q(m,n) exp(−j[2πm/M + 2πn/N ])

with t−mTr = nTs. The periodogram

P (m0, n0) =
¯̄
Q(m0, n0)

¯̄2
represents an ISAR image.

In order to analyze cross-range nonstationarities in the
Fourier transform, consider only the Doppler component
part in the received signal in continuous dwell time of one
target point (the p − th point), as it is usually done in the
literature on ISAR,

ep(t) = σp exp(j
2ω0
c

dp(t)). (3)



The Fourier transform of ep(t) produces

Ep(ω) =

Z ∞

−∞
w(t)ep(t) exp(−jωt)dt,

where w(t) is the window defining the considered time inter-
val (CIT). In order to simplify the notation in this part we
will just omit the index p.

For time-varying d(t) we can write a Taylor series expan-
sion of d(t) around t = 0

d(t) = d0 + d0(0)t+ .... =
∞X
n=0

1

n!
d(n)(0)tn (4)

where d(n)(0) is the n−th derivative of the distance at t = 0
and the Doppler shift is

∆ωd = 2ω0d
0(0)/c.

Fourier transform (FT ) of (3) with (4) is of the form

E(ω) =

Z ∞

−∞
w(t) exp(j

2ω0
c

∞X
n=0

1

n!
d(n)(0)tn − jωt)dt

Now, by omitting the constant term d(0) and with ∆ωd =
2ω0d

0(0)/c we get

E(ω) =W (ω −∆ωd) ∗ω FT

"
exp(j

2ω0
c

∞X
n=2

1

n!
d(n)(0)tn)

#
,

where ∗ω denotes convolution in frequency. Thus, the
Fourier transform is located at and around the Doppler
shift ω = ∆ωd. It is spread by the factor Sspread(ω) =

FT
h
exp(j 2ω0

c

P∞
n=2

1
n!
∆d(n)(0)tn)

i
.This factor depends on

the derivatives of the distance, starting from the second order
(first order derivative of the Doppler shift), i.e., the spread
factor depends on

sf (t) =
1

2
d
00
(0)t2 +

1

6
d000(0)t3 + .....

It can significantly degrade the periodogram image P (ω) =
|E(ω)|2 .

4. S-METHOD BASED IMPROVEMENT OF
THE RADAR IMAGES

Here we will present a method for readability improvement
of images blurred due to the long TIC and/or nonuniform
movement. Let us, instead of the Fourier transform (peri-
odogram), use the S-method defined by [5, 4]

SM(ω) =
1

π

Z ∞

−∞
E(ω + θ)E∗(ω − θ)dθ. (5)

It can improve the image concentration in a numerically very
simple and efficient way. Namely, by replacing E(ω) into (5)
we get

SM(ω) =
1

π

Z ∞

−∞

Z ∞

−∞

Z ∞

−∞
w(t1)w

∗(t2)

× exp
"
j
2ω0
c

∞X
n=0

1

n!
d(n)(0)tn1 − j

2ω0
c

∞X
n=0

1

n!
d(n)(0)tn2

#
× exp(−j(ω + θ)t1) exp(j(ω − θ)t2)dt1dt2dθ.

The part of integrand depending on θ is exp(−jθ(t1 + t2)).
Integration over θ results in 2πδ((t1 + t2). In the previous
equation it means that we get

SM(ω) =We(ω −∆ωd) ∗ω FT

∙
exp(j

2ω0
c
(
1

3!
d
000
(0)t3 + ...

¸
where similar calculations as in the FT case are done.

The S-method based image is located at
the same position as the Fourier transform im-
age, ω = ∆ωd, but with the spreading term

Sspread(ω) = FT
h
exp(j 2ω0

c
( 1
3!
d
000
(0)t3 + ...

i
. Its expo-

nent starts from the third derivative d
000
(0),

sf (t) =
1

6
d000(0)t3 +

1

120
d(5)(0)t5 + .....

Recall that in the Fourier transform based image the spread-
ing terms started from the second derivative d

00
(0). It means

that in the S-method, the points with linear Doppler changes

2ω0
c

d0(t) = ∆ωd(t) = ∆ωd + at

will be fully concentrated without any spread, since here
sf (t) = 0. Note that We(ω) is the Fourier transform of win-
dow w(t/2)w∗(−t/2) while ∆ωd without argument denotes
the constant part of ∆ωd(t), i.e., ∆ωd = ∆ωd(0).

4.1 Numerical implementation
Discrete version of (5) is

SML(k) =
LX

i=−L
E(k + i)E∗(k − i)

or

SML(k) = SML−1(k) + 2 real{E(k + L)E∗(k − L)}, (6)

with SM0(k) = |E(k)|2 being the standard Fourier transform
based representation.

Therefore, the S-method improvement can be achieved
starting with the already obtained radar image, with addi-
tional simple matrix calculation according to (6).

5. EXAMPLES

Setup in [7] assumes: High resolution radar operating at the
frequency f0 = 10.1 GHz, bandwidth of linear FM chirps
B = 300 MHz, pulse repetition frequency fr = 1/Tr = 2
kHz with 2048 pulses in one revisit (image integration time
Tc ∼= 2 sec, cases with Tc ∼= 1 sec and Tc ∼= 4 sec are also
considered). Pulse repetition time is Tr = 0.5 ms. The
target is at 2 km distance from the radar, and rotates at
ωR = 4

0/ sec . The nonlinear rotation with frequency Ω = 0.5
Hz is superimposed, ωR(t) = ωR + A sin(2πΩt), and ampli-
tude A = 1.250/ sec corresponds to the total change in an-
gular frequency ωR for 2.50/ sec. Note that here range and
cross-range resolutions are Rrange = c/(2B) = 0.5 m, and
Rcross−range = πc/(ω0TcωR) = 0.106 m. Since no transla-
tion in the experiment exists, there is no need for translation
compensation.

Assume that at t = 0 the line of points 1,2 and 3 is
parallel to the line of sight Fig.1.

Signal model corresponding to one of 6 rotating parts
is dp(t) = R+ xp cos(θR(t)) + yp sin(θR(t)) or after distance
compensation

dp(t) = xp cos(θR(t)) + yp sin(θR(t)) with

θ0R(t) = ωR(t) = ωR +A sin(2πΩt),

θR(t) = ωRt−A/(2πΩ) cos(2πΩt) + φ0



Figure 1: Illustation of the target simulation setup

we get the signal model with 6 components qp(m, t), each
one of them being defined by (2) .

The obtained results are presented in Figs.2 for the in-
stant t = 9 sec. Radar image in range/cross-range domain
obtained by using: the Fourier transform (periodogram) and
the S-method are given in these figures.
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Figure 2: Radar image in range/cross-range domain: Peri-
odogram (left), S-method(right) at the considered time in-
stant t = 9sec.

5.1 Application to a three dimensional target model

Consider now the case when the target point at a position r
rotates with an arbitrary oriented angular velocity ω. The
angular velocity is decomposed into three axes oriented ro-
tations defined by (ωrot, ωpitch, ωyaw). The corresponding
angles of the target point are (θr(t), θpc(t), θy(t)), where

θi(t) =

Z t

0

ωi(τ)dτ + θi(0).

If r = (xp, yp, zp) is the target position at t = 0 then
at any other instant the position r0 = (x0p, y

0
p, z

0
p) can be

determined by using the rotation three-dimensional space
matrix that reads [2] r0 = Rrot(RpitchRyaw)r. In this case
distance from the radar at an instant t is

d(t) = R(t) + cos(θpc(t)) cos(θy(t))xp

+cos(θpc(t)) sin(θy(t))yp − sin(θpc(t))zp

With θpc(t) = 0 and θy(t) ≡ θR(t) this model reduces to the
two-dimensional model. In general, Doppler shift and ISAR
image here assume much more complex form than in the 2D
case.

Example: Consider the radar setup as in [7]. Assume
here the same dimensions and parameters, but with a three
dimensional rotation, instead of a 2D geometry, with

ωyaw(t) = ωR(t) = ωR +A sin(2πΩt)

ωR = 60/ sec, Ω = 0.5 and A = 20/ sec and B = 600MHz.
Assume also

ωpitch(t) = Apc cos(2πΩpct)

with Apc = 3
0/ sec, Ωp = 0.25. The angle changes are

θy(t) = θR(t) = ωRt−A/(2πΩ) cos(2πΩt) +A/(2πΩ)

θpc(t) = Apc/(2πΩpc) sin(2πΩpct)

Results as in the first Example, including the same com-
ments, are shown in Fig.3.
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Figure 3: Radar image in range/cross-range domain: Peri-
odogram (left), S-method(right) at the considered time in-
stant t = 4sec.

5.2 Application to the boeing and mig target model
Finally, the presented method is applied to the model of boe-
ing727 and mig, that are often used as standard benchmarks
for the ISAR imaging methods. A simple virtual instrument
realization form of the S-method is done according to (6).
For L = 0 the standard Fourier transform based ISAR im-
age is obtained. By changing the number of terms L we
get the S-method based results with improved concentration
of points, when movement has degraded the image resolu-
tion. The results are presented in Figs.4, 5, 6 and 7. The
readability improvement obtained by using the S-method is
evident.

6. CONCLUSION

A method for computationally simple improvement of ISAR
images readability in the cases when they are blurred due
to high target movement nonstationarities is presented. The
method is based on the post processing of the whole set of
data, its Fourier transform and time-frequency representa-
tion known as the S-method. The proposed method can
improve the concentration almost as high as the Wigner dis-
tribution would do, but without or with reduced cross-terms.
Accuracy analysis confirms the improvements in analytical
and statistical way on a set of data produced according to
the experimental setup used in literature for radar images
analysis. A simple virtual instrument form of the S-method
implementation in ISAR is presented and applied on typical
signals representing radar images of boeing and mig.



Fourier transform

Figure 4: ISAR image of mig obtained by the Fourier trans-
form (S-method with L = 0).

S-method

Figure 5: ISAR image of mig obtained by the Fourier trans-
form improved by 6 additional terms (S-method with L = 6).
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