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ABSTRACT 
It is often claimed that instantaneous frequency, taken as 
the derivative of the phase of the signal, is appropriate or 
meaningful only for mono-component signals, and that for 
multi-component signals a weighted average of individual 
instantaneous frequencies should be used. In this paper, we 
show if a signal is decomposed adaptively and we compute 
the matching pursuit distribution, then the first conditional 
spectral moment is exactly the weighted average 
instantaneous frequency. Two different signals will be 
analyzed and the above result will be illustrated in practice. 
 

1. INTRODUCTION 

Many signals exhibit time-varying frequencies, and this 
gives rise to the concept of instantaneous frequency (IF). It 
is commonly defined as the derivative ( )(tφ′ ) of the phase 

of the signal )(
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in the form of the analytic signal [1]. IF is interpreted in the 
time-frequency literature as the average frequency at each 
time instant of the signal [2]. This interpretation arises 
because an unlimited number of time-frequency 
distributions ( ),( ωtPz ) of the signal z(t) yield the 
derivative of the phase for the first conditional spectral 
moment (i.e. )(tt φω ′=>< ), where: 
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Note that the well-known Wigner Ville distribution (WVD) 
has the above property. Although the IF, defined as the 
derivative of the phase of the signal, is interpreted as the 
average frequency at each time, it has been shown that this 
interpretation often does not make sense [3]. So in general, 
the IF of a signal, and the average frequency at each time of 
the signal are different quantities. A more useful quantity 
for the analysis of multi-component signals is the weighted 
average instantaneous frequency (WAIF) of the individual 

components [4]. For a signal z(t) as defined as above, then 
the WAIF is obtained as follows: 
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This quantity has a linear relationship to the individual 
instantaneous frequencies and so contains the appropriate 
information in a more convenient way.  

In this paper, we will review the matching pursuit (MP) 
signal decomposition and the associated bilinear 
distribution. Then we will derive the first conditional 
spectral moment, t>< ω , according to the MP distribution, 
and show that it is nothing more than the WAIF of the 
decomposed signal. Finally, two different signals will be 
analyzed and the above result will be illustrated in practice. 

 

2. REVIEW OF ADAPTIVE SIGNAL 
DECOMPOSITION THEORY 

Mallat and Zhang [5] proposed an adaptive signal 
decomposition. This method is based on a dictionary that 
contains a family of functions called elementary functions 
or time-frequency atoms. The decomposition of a signal is 
performed by projecting the signal over the function 
dictionary and then selecting the atoms which can best 
match the local structure of the signal. So, we compute a 
linear expansion of )(tz  over a set of elementary functions 
selected from the dictionary in order to best match its inner 
structures. The MP decomposition after M iterations can be 
written as follows: 
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where )(tz  is the decomposed signal, and )(tzRM  is the 
residue after M times signal decomposition. By letting 

)()(0 tztzR = , then the MP algorithm decomposes the 
residue at each stage. Thus the original signal is projected 
onto a sum of elementary functions, which are chosen to 
best match its residues; )(tg

nγ
 is the time-frequency atom 

that belongs to the dictionary, and which satisfies the unit-
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represents complex conjugate; and the parameter nγ  refers 
to the atom’s parameter set. When the number of iterations 
is infinitive, then the residue will be zero, and so we can 
say 
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Mallat and Zhang [5] defined the MP distribution as 
follows: 
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This new distribution, ),( ωtEz , can now be interpreted as 
an energy density function of z  in the time-frequency 
plane. There are two ways of stopping the iterative process: 
one is to use a pre-specified limiting number (M) of time-
frequency atoms, and the other is to check the energy of the 
residue, )(tzRM . In this paper we will adopt the first 
approach to stop the adaptive signal decomposition 
algorithm. 
 

3. DIFFERENT DICTIONARIES 

The first conditional spectral moment of many bilinear 
distributions does equal the IF (derivative of phase), though 
it often does not make sense when we are analyzing multi-
component signals. On the other hand, it was shown that IF 
equals the WAIF just for certain special signals [6]. We 
notice for the MP distribution, that what we compute as the 
first conditional spectral moment is identical to calculating 
the WAIF of the decomposed signal. Now suppose a signal 
is decomposed by MP, then it can be written as: 
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where )()()( tj
nn

netatz φ= , and the parameters na , and nφ  
are evaluated according to the type of chosen time-
frequency elementary function. So the MP distribution can 
be written as follows: 
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According to (1) and (2) the first conditional spectral 
moment is: 
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In addition, from the WVD properties [7], 
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Hence the first conditional spectral moment of the MP 
distribution takes the following form: 
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Obviously, this result above is identical to the WAIF (in 
(3)) for the decomposed signal, i.e. )(tt ωω =>< . 
However, the convergence property of MP signal 
decomposition is not dependent upon the type of time-
frequency atom used [8]. So the above result is valid in 
general, though different dictionaries will decompose a 
signal with different components. In the following work we 
will derive the first conditional spectral moment 
analytically, for the MP distribution based on the Gaussian 
as well as damped sinusoid elementary functions, and show 
that what is captured is indeed the WAIF. 
 
3.1 Gaussian Dictionary 
It is well known that the Gaussian atom is unique in the 
sense that it has the greatest “concentration” in both the 
time and frequency domains [9]. Such an atom is: 
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where 
24/12)( tetg π−=  and ),,( nnnn us ζγ =  is the atom 

parameters set. The parameter ns  controls the envelope 
width of 

n
gγ . The parameters nu  and nζ  are the temporal 

placement and the frequency variable. The parameters set 
are all real. In addition, ns  is also positive. As we use the 
Gaussian dictionary for the MP signal decomposition, the 
index n refers to the different atoms that exist in the 
dictionary. Now, suppose that a signal )(tz  is decomposed 
adaptively by employing the Gaussian elementary functions 
as follows: 

 tj

n
n

n
n

n

n
etatgctz ζ

γ ∑∑
+∞

=

+∞

=

==
00

)()()(  (13) 

where ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

n

n

n

n
n s

utH
s

c
ta

2
~

2
)(

4 2
, and 

22)(~ tetH π−= . It can 

be shown that the MP distribution with the Gaussian atom 
is: 
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Fig. 1. The true IF (solid curve) and the estimated IF (dotted 
curve) via the estimated first conditional spectral moment based 
on MP signal decomposition for: (a) the Gaussian dictionary, and 
(b) the damped sinusoid dictionary. The number of iterations was 
16. 
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conditional spectral moment of the bilinear matching 
pursuit distribution as follows: 
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can also be obtained using (3), but obviously it gives the 
same expression as (15).  
 
3.2 Damped Sinusoids Dictionary 
In most applications )(tg  is typically an even-symmetric 
window, such as the Gaussian window described above. An 
alternative is the damped sinusoidal atom [10]: 
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where ),,( nnnn ub ζγ =  is the parameters set, and 

)ln(2 nn bk −= . The parameter 10 << nb  is used to 
control the envelope width of 

n
gγ ; the parameter nu  refers 

to the temporal placement; nζ  is the frequency variable; 
and )(tU  is the unit step function: 
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Now consider that we have decomposed a signal adaptively 
based on using the damped sinusoid elementary function. 
The decomposition can now be defined as: 
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where )()( nnnnn utHckta −=  and )U()( tbtH t
nn = . We 

have computed the first conditional spectral moment of the 
new bilinear distribution as: 
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to show that the first conditional spectral moment, t>< ω , 
is the same as the WAIF as defined in (3), with nn t ζφ =′ )(  
and )(tan  is as above.  

We will now decompose both a mono-component, and a 
multi-component signal in practice. We will then compute 
the first conditional spectral moments according to (15) and 
(19) and examine how far they are from both the true IF 
and true WAIF. 
 
Example. 1 
For the first example, we consider a signal that can be 
categorized as mono-component, with unit amplitude and 
oscillatory phase: 
 ( ) ( )( )exp 0.625 sin 0.002 , 0,1, ,299z t j t t tπ π= = L . (20) 
We decomposed the signal and set the number of algorithm 
iterations to be equal to 16. So, we have found the best 
Gaussian and damped sinusoid atoms individually. The first 
conditional spectral moments have been computed and are 
shown in Fig. 1. As we know the mathematical function for 
the signal, we have also obtained the true IF (phase 
derivative, )(tφ′ ) and sketched this in each figure. We must 
remember that for a mono-component signal such as this, 
then the WAIF is same as the IF.  
 
Example 2 
If we now consider a two-component signal 
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where ))(cos()()(2)()()( 1221
2
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2 ttatatatata φ∆++= , and 
)()()( 2112 ttt φφφ −=∆ . This IF is an oscillating function, 

which is very sensitive to the amplitudes of the 
components. So consider the following two-component 
signal: 
 )50150(215)30100(2 222

5.0)( ttjtttj eeetz +−+ += ππ . (22) 
It includes two chirps of unequal chirp rate and unequal 
time-varying amplitude (the same signal was used in [4]). 



The time range is considered to be: 0.5 0.5t− ≤ ≤ . We have 
decomposed the above signal by using the Gaussian, and 
damped sinusoidal dictionaries. After decomposing the 
signal and obtaining the best 16 atoms, we have then 
evaluated the first conditional spectral moment, and this is 
shown in Fig. 2. Because the mathematical expression for 
the signal in (22) is known, the true IF as well as the true 
WAIF (in general different from the IF for multicomponent 
signals) were both also derived and plotted in Fig. 2. Now 
although the first conditional spectral moment tends to be 
the IF for many bilinear time frequency distributions, if we 
compute this quantity based on MP, then it converges to the 
WAIF (as can be seen in Fig.2). This means that by using 
the MP distribution, we actually compute the WAIF for the 
decomposed signal. Finally, the amount of error between 
the true WAIF, and our estimate via the first conditional 
spectral moment, is dependent upon the kind of elementary 
function chosen and the number of algorithm iterations. 
 

4. DISCUSSION AND CONCLUSIONS 

The interpretation of IF, defined as the derivative of the 
phase )(tφ′  of a complex signal representation )()( tjeta φ , 
has been a subject of investigation and debate for years. 
One interpretation is that the IF is the average frequency at 
each time, because the first conditional spectral moment of 
many bilinear time frequency distributions equals the IF. 
The main paradox is that the instantaneous frequency often 
ranges beyond the spectral support of many signals. So the 
WAIF of the individual components may be a more useful 
quantity. That is fine as a definition, but it is generally 
difficult to use in practice because there is no systematic 
and general method for determining the components of a 
signal (i.e., the individual amplitudes and phases), which is 
itself a challenging problem. We have shown that the first 
conditional spectral moment, as computed from the MP 
distribution, is exactly the WAIF calculated from the 
decomposed signal. Two different known signals have been 
analysed and we have seen from simulations that what we 
compute as the first conditional spectral moment tends 
towards to the true WAIF, as the theory predicts. Finally, 
exactly what kind of elementary functions best extract the 
signal components is still an open question. 
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