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ABSTRACT

The sinusoidal frequency estimation from short data records based
on Toeplitz autocorrelation (AC) matrix estimates suffer from phase
noise. This effect becomes prominent especially when additive
noise vanishes becoming a nuisance, that is at high signal-to-noise
ratios (SNR). Based on both analytic derivation of the AC lag
terms and simulation experiments, we show that data windowing
can mitigate the limitations caused by the phase noise. Thus with
proper windowing, the variance of the frequency estimate is no
more limited by phase noise, but it continues to decrease linearly
with the SNR. The cases of the Pisarenko frequency estimator and
of MUSIC, both for the single sinusoid case, are analyzed in detail.

1. INTRODUCTION

The problem of sinusoidal frequency estimation in an additive noise
environment is a commonly encountered problem in such diver-
sive areas as communication systems, geophysics, vibration anal-
ysis, acoustics and biomedical applications. Although the maxi-
mum likelihood method gives the theoretically best performance,
it requires to solve nonlinear optimization problems in the case of
closely spaced sinusoids in the frequency. So, model-based subop-
timum techniques has been used extensively due to their computa-
tional advantages and high resolution property. Especially, when
the data record has a limited number of samples, model-based spec-
tral estimation techniques show superior performance in general.
Many of these techniques use autocorrelation (AC) lags of the data
in order to estimate the frequencies of the sinusoids. In this work,
we consider two subspace-based methods which utilize the Toeplitz
AC matrix estimate to find the sinusoidal frequencies.

An important disadvantage in the utilization of the Toeplitz
AC matrix for the frequency estimation with short data records is
the observation of a minimum attainable variance of the estimators
even when the signal-to-noise ratio (SNR) is increased unbound-
edly. This error floor effect is caused by the phase noise. The data
windowing is shown to mitigate this handicap which is the main
contribution of this paper.

In section 2. the sinusoidal frequency estimation problem and
the utilized frequency estimators, namely, Pisarenko frequency es-
timator (PISFE) and Multiple Signal Characterization (or Classifi-
cation) (MUSIC) are defined. In Section 3. the statistics of the AC
lag estimates with and without data windowing are derived. In Sec-
tion 4. the probability density function (pdf) of PISFE with and
without data windowing is derived and performance improvement
caused by the data windowing is shown based on both analytical
and experimental results. Section 5 covers the simulation results of
MUSIC and PISFE showing the elimination of the variance lower
bound on the frequency estimates by data windowing. Finally, the
conclusions are given in Section 6. Detailed derivation of the pdf of
AC lags with data windowing is given in the appendix in order to
make the paper easier to follow.

2. FREQUENCY ESTIMATION PROBLEM AND
UTILIZED MODEL-BASED ESTIMATORS

The signal model under consideration consists of multiple real si-
nusoids observed in additive white Gaussian noise (AWGN), i.e.,

xk � K

∑
i � 1

�
2Ai cos � ωikT � φi � � nk k � 1 	 2 	�
�


 N

where Ai, φi and ωi are the non-random amplitude, the random
phase angle uniformly distributed on ��� π 	 π � and the angular tone
frequency of the ith real sinusoid, respectively, and T is the sam-
pling period, � nk � is a real white Gaussian noise sample sequence
with zero mean and power σ 2

n and N is the number of data sam-
ples. We are interested only in the angular frequency parameter.
The other parameters are considered as nuisance parameters. We
assume without loosing generality that the number of the sinusoids
is either known or can be estimated from the data. We also drop
the index of the sinusoidal parameters for the single sinusoid case.
The results of the data windowing which are developed in this pa-
per are also valid for the more useful multiple sinusoids case, but
we preferred in this paper to use a single sinusoid case to empha-
size the main points of the work. In this work we use two different
frequency estimators, namely, PISFE and MUSIC frequency esti-
mators which we will define briefly.

For a single sinusoid case, PISFE is obtained in terms of the AC
coefficients by assuming T � 1 as follows [1]:

ω̂ � arccos � ψ � (1)

where

ψ � r � 2 ��� �
r2 � 2 ��� 8r2 � 1 �
4r � 1 �

and r � k � denotes the kth autocorrelation coefficient of the input
samples and is calculated as r � k � ��� ∑N � k

i � 1 xixi � k ��� � N � k � which
shows that the estimated tone frequency depends on the AC coeffi-
cient at lags 1 and 2, and does not depend on the signal waveform.
For a single tone case, this result is very practical for its computa-
tional simplicity.

PISFE is a special case of the more general MUSIC fre-
quency estimator. To obtain the MUSIC frequency estimator first
the Toeplitz sample estimate of the M � M AC matrix is built as� RM � i 	 j � � r ��� i � j � ��	 i 	 j � 1 	 
�
�
!	 M � 
 The MUSIC power spectrum
is given as:

MUSIC � f � � 1

∑M
k � 2K � 1 � " † � f �$# k � 2

where the set �%# i 	 i � 2K � 1 	 


�
�	 M � contains the M-dimensional
noise subspace eigenvectors corresponding to the M � 2K
smallest eigenvalues of the AC matrix estimate and " † � f � �� 1 e � j2π f &�&�& e � j2π ' M � 1 ( f � 
 The estimated tone frequency (or fre-
quencies) is (are) found by picking the K peak-pairs of this power
spectrum which correspond to K real tones.
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Figure 1: Pdf of rx � 1 � : low SNR case, solid line: analytic computa-
tion, histogram lines: histogram obtained by simulation (ω � π � 4
(rad), N � 50, SNR = 5 dB, 100 000 noise realizations.)

3. THE NEED FOR DATA WINDOWING

In order to find the performance of the frequency estimators based
on the Toeplitz AC matrix estimate, the statistics of the sample AC
coefficients must be derived. For a single sinusoid of angular fre-
quency ω the AC lag estimates are given by

rx ) l *,+ 1
N - l

N . l

∑
k / 1 0 A 1 cos ) ω lT *32 cos ) ω ) 2k 2 l * T 2 2φ *5427698 2Acos ) ωkT 2 φ * nk : l ;2<6 8 2Acos ) ω ) k 2 l * T 2 φ * nk ; 2 nknk : l =?>

The large sample statistics of rx � l � was derived in [2] where it is
shown to be Gaussian distributed with mean and variance

µx ) l *@+ Acos ) ω lT * for i + 1 A >B>B> A N - 1 (2)

cx ) l *@+ σ4
n

N ) 1 2 4A C σ2
n cos2 ) ω lT *D* for i + 1 A >B>B> N - 1 (3)

respectively. For more practical small sample sizes let us express
rx � l � as

rx � l � � rx E h � l ��� rx E g � l � (4)

where

rx E h � l � � 1
N � l

N � l

∑
k � 1

Acos � ω � 2k � l � T � 2φ �
and rx E g � l � corresponds to the sum of all the remaining terms in (4)
which have AWGN terms inside and the deterministic component
Acos � ωlT � . In this study, we neglect the dependence of rx E h � l � and
rx E g � l � and derive the pdf of rx � l � under the assumption that they
are statistically independent. The comparison of the derived analyt-
ical pdf expressions with histograms obtained by simulation exper-
iments show that there is not any considerable loss due to the com-
mited approximation. So, (4) is a sum of two independent random
variables. The pdf of this quantity can be obtained as a convolution
of the pdfs of the two random variables. One can easily obtain the
pdf of rx E h � l � as

f ' l (Rx F h � rx E h � � 1

πd � l ��G 1 �H� rx E h � l � � d � l ��� 2
for � d � l �JI ω I d � l ��


(5)
This pdf has the form of the derivative of the arcsinω scaled with
the constant d � l � which can be found using a rectangular window
in (10). Notice that for large sample sizes rx E h � l � will tend to zero.
Here, we make an assumption that rx E g � l � will also have approx-
imately the Gaussian distribution valid for the large sample case
with mean µx � l � and variance cx � l � . So, the pdf of rx � l � is found as
the result of the convolution

f ' l (Rx
� rx � � d ' l (K

� d ' l ( exp LJ� 1
2
' rx ' l (B� τ � µx ' l (M( 2

cx ' l ( N
πd � l � � 1 �O� τ � d � 2

�
2πcx � l � dτ 
 (6)
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Figure 2: Pdf of rx � 1 � : high SNR case, a: pdf of rx E g � 1 � (only
Gaussian component, analytic computation),b: pdf of rx � 1 � (ana-
lytic computation), c: histogram obtained by simulation, d: pdf of� rx E h � 1 �P� cos � ω � � (shifted phase noise component, analytic com-
putation) (ω � π � 4 (rad), N � 50, SNR = 30 dB, 100 000 noise
realizations.)

In Figures 1 and 2 we plotted the pdf of rx � 1 � together with the
histogram obtained as a result of simulations with 100,000 inde-
pendent runs of a single sinusoid in AWGN where ω � π � 4 and
N � 50. In Figure 1, SNR = 5 dB whereas it is 30 dB in Figure 2. In
Figure 1, we observe close matching of the histogram and the pdf
calculated as a Gaussian waveform with mean µx � 1 � and variance
cx � 1 � corresponding to the large sample size case. For this low SNR
value of 5 dB also the pdf computed using (6) perfectly matches the
plotted Gaussian pdf. For a high SNR value of 30 dB the pdf of
rx � 1 � no longer resembles a Gaussian waveform as it is depicted
in Figure 2. In fact, its shape is governed by the pdf of the phase
dependent term rx E h � 1 � since the frequency interval for which this
term is non-zero is constant independent of the SNR. This behav-
ior makes it impossible for the variance of the AC lag estimates to
tend to zero as the SNR increases unboundedly. On the contrary,
an asymptotic lower bound exists which is given by the variance of
the rx E h � l � . This behavior will also cause an error floor on the vari-
ance of the frequency estimates obtained using estimators based on
these AC lags. The pdf of rx � 1 � computed by (6) and the simulation
histogram again match closely. In this figure also the pdfs of the
individual Gaussian and phase noise components are plotted, which
are computed again as a Gaussian pdf corresponding to the large
sample size case and using (5) with l � 1, respectively.

We suggest data windowing to prevent this unwanted large SNR
behavior of such estimators. Remembering the Wiener-Khinchine
relationship between the AC lags and the power spectrum, one can
intuitively think of eliminating the leakage in the AC lags with data
windowing just like it is the case in DFT analysis based methods.
The data windowing is hoped to decrease the frequency interval
where the pdf of the phase dependent term is non-zero.

The statistics of the AC lags after data windowing are obtained
in Appendix A. These estimates, namely, ry E h � l � and ry E g � l � again
have pdf’s of the same form as the ones of rx E h � l � and rx E g � l � , re-
spectively. However due to the rôle of data windowing in reducing
the interval where f ' l (Ry F h � ry E h � is nonzero, their convolution is now ap-
proximately Gaussian even at high SNRs. We will demonstrate this
by comparing the simulation histograms and the pdf expressions of
PISFE under Gaussianity assumption of the AC lags.

4. THE PDF OF PISFE

The pdf of PISFE, ω̂ , is obtained from the pdf of the intermediate
random variable ψ using the transformation

fPISFE � ω̂ � � G 1 � cos2 � ω̂ � fψ � cos ω̂ ��
 (7)

We will present the derivation of the pdf of ψ elsewhere due to space
limitation. The derivations are based on the Central Limit Theorem
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Figure 3: Pdf of PISFE with and without data windowing versus
normalized angular frequency, a: analytic computation for non-
windowed data, b: histogram for non-windowed data simulation,
c: analytic computation for windowed data, d: histogram for win-
dowed data simulation (ω � π � 4 (rad), N � 100, SNR = 20 dB,
data window: Blackman-Harris type window of Nuttall with coeffi-
cients, a0 � 10 � 32, a1 � 15 � 32, a2 � 6 � 32, a3 � 1 � 32).

(CLT) so the pdf expression is expected to be valid only for large N
(e.g. N Q 50). The pdf is

f � ψ � � 4K1e R A4
2

A2 � ψ �TS B1 � ψ � u � ψ �� 1 � A1 � ψ ��� � B2 � ψ � u � � ψ �� 1 � A1 � ψ � �VU (8)

where u � & � represents the unit step function. The remaining defini-
tions are given as:

K1 + 1

2πσ1σ2 W 1 - ρ2

A0 ) ψ *X+ ) 2ψ2 - 1 *DC ψ

A1 ) ψ *X+ A0 ) ψ *DCZY A2
0 ) ψ *32 8

A2 ) ψ *[+ 1) 1 - ρ2 *]\3^ A0 ) ψ *
σ2 _ 2 2 1

σ2
1

- 2ρA0 ) ψ *
σ1σ2 `

A3 ) ψ *[+ 2) 1 - ρ2 *Va ρ
σ1σ2

) µ ) 2 *32 A0 ) ψ * µ ) 1 *D*%- µ ) 1 *
σ2

1
- A0 ) ψ * µ ) 2 *

σ2
2 b

A4 + 1) 1 - ρ2 *]\3^ µ ) 1 *
σ1 _ 2 2 ^ µ ) 2 *

σ2 _ 2 - 2ρµ ) 1 * µ ) 2 *
σ1σ2 `

B1 ) ψ *[+ \ 1 2 A3 ) ψ *
4 c 2π

A2 ) ψ * exp
A2

3 ) ψ *
8A2 ) ψ *ed erf d A3 ) ψ *W 8A2 ) ψ *gf - 1 fh`

B2 ) ψ *[+ \ 1 2 A3 ) ψ *
4 c 2π

A2 ) ψ * exp
A2

3 ) ψ *
8A2 ) ψ * d erf d A3 ) ψ *W 8A2 ) ψ *gf 2 1 fh`

with � µ � i ��	 i � 1 	 2 � and � σ2
1 � c � i ��	 i � 1 	 2 � representing the

means and variances of the first two AC lags given by (2) and (3),
respectively, and ρ � cov � r � 1 ��	 r � 2 ��� � � c � 1 � c � 2 ��� 1 i 2 is their correla-
tion coefficient where

cov � r � 1 ��	 r � 2 ��� � S 4Aσ2
n

N U cos � ωT � cos � 2ωT � (9)

is their cross-covariance. Finally, erf � & � denotes the error function.
We performed simulations with and without data windowing

and also calculated the corresponding pdf using (7) and (8). In the
calculation of the pdf of PISFE, the pdf of the AC lags are modeled
by the Gaussian densities with means and covariances defined by
(2), (3) and (9) for the non-windowed data and by (11), (14) and
(13) for the windowed data, respectively. The normalized angular
frequency ω � π � 4 (rad), the sample size N � 100 and the number
of the independent runs in the simulation is 100,000. The results
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Figure 4: Variance of the PISFE and MUSIC frequency estimates
with and without data windowing versus SNR, a: PISFE , b: PISFE
(with data windowing), c: MUSIC, d: MUSIC (with data win-
dowing) (ω � 0 
 5 (rad), N � 50, data window: Blackman-Harris
type window of Nuttall with coefficients, a0 � 10 � 32, a1 � 15 � 32,
a2 � 6 � 32, a3 � 1 � 32).

in Figure 3 depict that without data windowing the statistics of the
AC lags are different from the pdfs in [2] even at this not very high
SNR of 20 dB which is evident from the mismatch of the analytical
computation of the pdf and the histogram of the simulation results.
On the other hand, when a data window is utilized, the analytically
computed pdf and the histogram perfectly matches. When the com-
puted pdfs with and without data windowing are compared, one can
see a performance degradation introduced by the data window since
the width of the pdf is increased. However, one should consider
that the computed pdf with no data window belongs to a clairvoy-
ant estimator which does not exist. In other words, the Gaussianity
assumption on the pdfs of the AC lag estimates fails which in turn
makes the pdf expression of PISFE based on this assumption in-
valid.

We used a Blackman-Harris type data window with continuous
fifth order derivatives [3] which showed good performance when
compared with other windows in terms of the introduced bias and
variance and also eliminated the splitting of the pdf.

5. EFFECTS OF DATA WINDOWING ON THE VARIANCE
OF PISFE AND MUSIC FREQUENCY ESTIMATES

We also performed simulations to demonstrate the variance floor of
the considered frequency estimators which utilize the Toeplitz AC
matrix estimate. In Figure 4 we plotted the variance of the PISFE
and MUSIC frequency estimates with and without data windowing.
The curves are obtained by averaging the results of 10,000 inde-
pendent runs where ω � 0 
 5 (rad) and N � 50. The data window
is again the same Blackman-Harris type window as the one used
for the previous figure. The AC matrix is 10 � 10 for the MUSIC
estimator. Without data windowing an error floor of - 38 dB and -
43 dB is observed for PISFE and MUSIC, respectively. The utiliza-
tion of the data windowing cancels this behavior as it is depicted
in the related variance curves of PISFE and MUSIC. At low SNR
values the phase noise is ineffective and a performance loss in the
variance figures are observed due to the property of data window-
ing to reduce the resolution capability of the frequency estimators.
The increase in variance due to the data windowing at SNR = 0
dB, is about 8 dB and 14 dB for PISFE and MUSIC, respectively.
As the SNR gets higher, the gain due to the eliminated phase noise
increases and approximately at SNR = 13 dB it compensates the
loss due to the decreased resolution. Increasing the SNR further, in-
creases the variance reduction due to the data windowing which is
45 dB and 49 dB for MUSIC and PISFE, respectively, at SNR = 60
dB. The results of this simulation are valid for any ω with possible
exceptions of some particular frequencies of the specific frequency
estimator which are robust to the phase noise [4, 5].



6. CONCLUSIONS

In this study we considered the phase noise problem in sinusoidal
frequency estimation using Toeplitz AC matrix estimates for small
sample sizes. Our contributions can be listed as follows:j We showed that the pdfs of AC estimates result from the con-

volution of the Gaussian pdf for the large sample size case and
a double peaked pdf due to the random phase of the sinusoid
which is a scaled derivative of the inverse sine function. We
demonstrated the validity of our claims comparing our analyti-
cal results with simulation histograms both at low SNRs and at
high SNRs where the pdf becomes governed by the phase noise.j We suggested data windowing to eliminate the effects of the
phase noise and derived the pdfs of the windowed AC estimates
for the windowed data.j In order to illustrate the corresponding benefit for the fre-
quency estimators due to data windowing we considered apply-
ing PISFE to estimating the frequency of the single sinusoid in
AWGN. We showed the phase noise governed behavior of the
pdf of PISFE at high SNRs with simulation histograms. We
gave an analytical expression for this pdf under Gaussianity of
the AC estimates assumption with and without data windowing.
This pdf was shown to closely match the simulation histogram
as a consequence of the success of the data windowing in elim-
inating the phase noise disturbance.
We conclude that in the given problem the frequency estimation

quality becomes governed by the phase noise at high SNRs and data
windowing prevents this by making the AC estimates, and in turn
the frequency estimators using them, have increasingly narrower
pdfs as the SNR gets higher while the cost is the increased variance
at low SNR values due to the reduction in the resolution capability
of the estimators.

The windowing functions should be selected in a way to make a
compromise between the amount of decrease in the resolution capa-
bility and the sidelobe reduction ability. We found that continuous
fifth order derivatives at the borders, produced satisfactory window-
ing performance.

Our results on the elimination of the phase noise with data win-
dowing is valid for any frequency estimator based on the Toeplitz
AC matrix estimate. However, model-based frequency estimators
of high subspace dimensions like MUSIC generally utilize AC ma-
trix estimates constructed using the so called covariance method
[6] which does not suffer from the phase noise. Consequently, the
proposed data windowing is practically useful for the frequency es-
timators which inherently utilize the Toeplitz AC matrix estimate
like Pisarenko harmonic decomposition and Yule-Walker method
with Levinson-Durbin recursion. In spite of their inferior perfor-
mance these frequency estimators are computationally very advan-
tageous due to the Toeplitz structure and without the proposed data
windowing we think that they are essentially incompletely defined.

As a final conclusion we advise to use data windowing with
frequency estimators which are inherently based on Toeplitz AC
matrix estimate in order to be able to obtain frequency estimates
with variances smaller than the variance lower bound given by the
phase noise. If this lower bound corresponds to an accuracy more
than the requirement, data windowing should not be applied prior
to the frequency estimation in order not to decrease the frequency
resolution.

We should also say that we could not give the derivation of
the PISFE pdf, performance comparisons with other estimators and
considerations of choosing the data window in this paper due to
space limitation. Those will be given elsewhere.

A. PDF OF THE AC-LAGS AFTER DATA WINDOWING

Let yk � wkxk where � wk 	 k � 1 	 2 	�
�
 
�	 N � represents a data window
[3]. For a rectangular window function the asymptotic pdf of ry � i � �
rx � i � � rx E h � i �k� rx E g � i � is the convolution of the pdf’s of rx E h � i �
and rx E g � i � referred to as f ' i (Rx F h � rx E h � and f ' i (Rx F g � rx E g � , respectively.

f ' i (Rx F h � rx E h � has the form in (5) and f ' i (Rx F g � rx E g � was found to be Gaus-

sian [2]. It can be shown easily that f ' i (Ry
� ry � � f ' i (Ry F h � ry E h ��l f ' i (Ry F g � ry E g �

where ry � i � � ry E h � i �m� ry E g � i � . In the case of a general data window

f ' i (Ry F h � ry E h � again has the form of (5), but now d � i � is given by:

d � i � � 1
N � i n N � i

∑
k � 1

N � i

∑
l � 1

wkwk � iwlwl � i cos � ω � k � i ����o 1 i 2 
 (10)

The distribution of ry E g � i � ’s are again Gaussian due to the CLT but
their first and second moments are affected by the windowing func-
tion. Now these moments are derived where the derivation closely
follows the derivation in [2] for the non-windowed data.

The mean of the ry � i � is:

µy E g � i � � 1
N � i

N � i

∑
k � 1

wkwk � iµx E g � i � (11)

where µx E g � i � � E � rx E g � i � �p� Acos � ωiT �m� σ2
n δi E j with δi E j denot-

ing the Kronecker delta which equals either unity in the case of i � j
or zero for the other cases. So, the covariance of ry E g � i � and ry E g � j �
can be calculated as

cy E g � i 	 j � � 1� N � i ��� N � j � N � i

∑
k � 1

N � j

∑
l � 1

wkwk � iwlwl � i (12)

E �m��� sk � nk �9� sk � i � nk � i �q� µx E g � i ������ sl � nl �9� sl � i � nl � i �r� µx E g � j ��� � 

After tedious steps one obtains

cy E g � i 	 j � � σ2
n� N � i �9� N � j � N � i

∑
k � 1

N � j

∑
l � 1

� wkwk � iwlwl � i � (13)s
µs � k � l � δk � i E l � j � µs � k �H� l � j � � δk � i E l� µs ��� k � i �q� l � δk E l � j � µs ��� k � i �q�O� l � j ��� δk � i E l � j� σ2

n t δk E lδk � i E l � j � δk E k � iδl E l � j� δk E l � jδl E k � i � δi E 0δ j E 0 uwv 

When i � j, (13) simplifies to

cy E g � i 	 i � � σ2
n� N � i � 2 x N � i

∑
k � 1

2Aw2
kw2

k � i � N � 2i

∑
k � 1

2Acos � 2iωT �
wkw2

k � iwk � 2i � σ2
n

N � i

∑
k � 1

w2
kw2

k � i y 
 (14)
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