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ABSTRACT 

Although the origin of many  sources of information is ana-

logue or continuous-time, due to practical considerations 

signal representation is usually based on discrete-time basis 

functions. These basis functions are in many cases sampled 

versions of harmonic signals (Fourier), Gabor, wavelets and 

the like. In this paper, we examine the accuracy of this ap-

proach, where the calculation of the representation coeffi-

cients is performed using digital inner product rather than 

analogue. By interpreting the sampling process as a bounded 

linear operator, we analyze the difference between the ana-

logue domain inner product and the result one may get in the 

digital domain. We consider both the one-dimensional and 

two-dimensional cases, and several applicable examples are 

given. 

 

1. INTRODUCTION 

Signal processing applications are concerned mainly with 

digital data, although the origin of many  sources of 

information is analogue, such as speech and audio, optics, 

radar, sonar, velocities, forces, biomedical signals and many 

more. For many situations it is well known that the set of 

functions {sinc ( t/T-n )}n constitutes an orthogonal basis for 

the space of π /T - band limited functions [1], and that the 

corresponding representation coefficients are then simply 

obtained as the uniformly spaced samples of the original 

signal.  Most signals, however, are not band limited. Thus, 

considering their sampled version as a representation 

scheme introduces errors. For this reason mainly, alternative 

basis functions such as Gabor functions, wavelets, and other 

orthogonal function-sets are often used instead [2,3,4]. 

Finding representation coefficients for these alternative basis 

functions involves L2 inner-product calculations within the 

analogue domain, rather than simply consider the sampled 

version of the signal itself as in the case of band limited 

functions. This in turn is in most cases difficult to imple-

ment, and even impossible in applications where the only 

data available are the sampled version of the signal itself.  

To overcome this difficulty, it may be naively assumed that 

this L2 inner product could be reasonably well approximated 

by an l2 one, i.e.,:  

(1) ( ) ( )∑ ⋅⋅≅
n

nTnTfTf ϕϕ, , 

where f(t) is the original signal and ϕ (t) is a known (basis) 

function. However, with no prior knowledge of the original 

signal f(t) beyond its samples, no bound on this approxima-

tion error is presently available. 

The question raised in this work is whether the sampling 

process keeps algebraic relations, shared within the analogue 

domain, intact. This question is of interest in signal process-

ing applications. To investigate this task of signal 

representation, we consider the operation widely used in 

vector representation, the inner product. More specifically, 

we search for alternative approximation schemes for this 

inner product within the digital domain.  

2. THE PROBLEM 

We address the following problem (Figure 1): Given a func-

tion ϕ (t)∈L2, what is the approximation error of the inner 

product of 〈 f,ϕ 〉, if only the samples of f(t) are available? 
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Figure 1: Statement of the problem - given a function ϕ (t), what 

is the approximation error of the inner product of 〈 f,ϕ〉 , if only 

the samples of f (t) are avaiable?  

3. SAMPLING AS A LINEAR OPERATOR 

The analogue sources that interest signal processing practi-

tioners have finite energy. Thus, representation coefficients 

are extracted by applying an L2 inner product: 

(2) ( ) ( )∫ ⋅= dtttff
L

ϕϕ
2

, , 

where for simplicity, only real functions are considered. Ap-

proximating both f and ϕ by piecewise constant functions 

can be interpreted as approximating this L2 inner product by 

an l2 inner product of two finite-energy sequences:  

(3) ( ) ( )
22
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This interpretation, however, should be done with much 

prudence; sampling a function of L2 does not necessarily 

yield a sequence of l2. Blu and Unser [5] have shown, never-

theless, that sampling a Sobolev function [6] of order one, 

i.e. f (t), f ’(t) ∈ L2, would always yield a sequence having 

finite energy. The importance of this result resides in the fact 

that the sampling process can now be considered as a linear 

bounded operator [7] acting on a Sobolev space of an arbi-

trary order to yield an l2 sequence.  A Sobolev space of order 

n (denoted here W2
n
) consists of all finite energy functions 

having at least n finite energy derivatives. It is a Hilbert 

space considering the following inner product: 
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where F and Φ denote for the Fourier transform of f and ϕ 

respectively. Sobolev functions of an arbitrary order are 

dense in L2, therefore, restricting our analysis to such func-

tions still maintains generalization of the results.  

 

We start our analysis with the introduction of two lemmas: 

 

Lemma 1: The sampling operator ST is given by, 

(5) ( ) ( ) ,,

:
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where {en} is the standard basis of l2, and u(t) is the inverse 

Fourier transform of , 
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Lemma 2: The adjoint operator of ST, namely ST*, is given 

by, 

(7) ( )( ) [ ] ( )∑ −⋅=

→

∗

n
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22
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where u(t) is given in Lemma 1. 

The proof of the above 2 lemmas is given in [8]. 

 

 

4. INNER PRODUCT: INTERTWINING RELATIONS 

OF L2,  l 2 & W2 

It has been shown [8] that both L2 and l2 inner products can 

be expressed as inner products of a Sobolev space of order 

n, which leads to the following result (Figure 2). 

 

Lemma 3: Let ϕ (t)∈L2 be a known function, and let 

b[n]∈l2 be a known sequence. Then, ∀f∈W2
n
 : 

(8) 
nW

TlTL
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ST  is the uniform sampling operator given in Lemma 1, ST
*
 - 

its adjoint given in Lemma 2 and ϕ* is given by, 

(9) ( ) ( ) ( )tutt ∗=∗ ϕϕ , 

where u(t) is given in Lemma 1, as well. 

The proof is given in [8]. 

n
W2

2l

2L

ϕ,f

*,ϕf

bSf T
*

,

bfST ,

 

Figure 2: Intertwining relations of L2-, l2- & W2
n
 inner products. ϕϕϕϕ  

is a known function of L2 , b is a known sequence of l2. f is an 

arbitrary Sobolev function of an arbitrary order to be uniformly 

sampled. The inner product of L2 has a corresponding representa-

tion in W2
n
, and the same holds for the l2 inner product. 

 

5. SAMPLING EFFECTS UPON L2 INNER PRODUCT 

The following theorem is the basis to our analysis of the 

approximation error. 

 

Theorem 1:  

Let ϕ (t)∈W2
1
 be a known function. Given a sampling inter-

val T, the following relation holds for any Sobolev function  

f (t)∈W2
n
 : 

(10) 
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where ST is the uniform sampling operator with interval T,  B 

is given by, 

(11) 
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and u(t) is the inverse Fourier transform of , 
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The proof is given in [8]. 



Example 1: Sampling Hermite functions. 

The Hermite functions constitute an orthonormal basis in L2. 

Thus, the representation coefficients are to be found by cal-

culating a k = 〈 f, ϕ k 〉L2 , where ϕ k is the Hermite function of 

order k. Having both the sampled versions of  f and ϕ k , a k  

would be approximated by, 

(13) ( ) ( )∑ ⋅⋅=⋅=
n

klkTTk nTnTfTSfSTa ϕϕ
2

,ˆ  

This in turn would yield an approximation error, upper 

bounded by B ·║f║L2 . Some bounds are shown for example 

in Figure 3 for the first Hermite function (a Gaussian).  

 

 

Figure 3: Upper bounds for the approximation of 〈〈〈〈 f,ψψψψ k 〉〉〉〉 by their 

corresponding sampled versions. Here ψψψψk is a Hermite function of 

order k = 0 (a Gaussian). The upper bound for this error is given 

by B ·║f║. Shown are upper bounds where the admissible func-

tions, f, are Sobolev functions of several orders (5,10,15,20 and 

infinity). 

 

6. SAMPLING EFFECTS UPON L2 INNER PRODUCT 

– THE TWO DIMENSIONAL CASE (IMAGES) 

Introducing the two-dimensinal Sobolev space, it consistes 

of the following inner product [6]: 

(14) ∑
≤≤

=

n
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where α = (α1, α2) is a 2-tuple of nonnegative integers, 

|α | = α1 + α2 and Dα 
= ∂ α 1

 /∂x ·∂ α 2
 /∂y. The function u(t)  

then, defined in Lemma 1, corresponds now to the inverse 

Fourier transform of U(u,v), given by the following equation 

(few examples are given in Table 1): 
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Table 1: U(u,v), shown here for several Sobolev orders (n=1, 2, 

3), describes the sampling functional in terms of a Sobolev inner 

product for two dimensional signals, i.e. f(x0,y0) = 

〈〈〈〈 f , u(x-x0, y-y0) 〉〉〉〉 W2
n. 

 

 

This derivation of u(x,y), in turn, enables one to analyze the 

sampling effects on the inner product with regard to images; 

 

Theorem 2:  

Let ϕ(x,y)∈W2
1
 be a known function. Given a sampling in-

terval T, the following relation holds for any Sobolev func-

tion f (t)∈W2
n
 : 

(16) 
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where ST is the uniform sampling operator with an interval 

T . B is then given by, 

(17) 
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The proof is given in [8] 

 

 
Example 2: Suppose one wishes to determine whether two 

images are different or not. i.e., it is required to approximate 

the representation coefficients according to a set of basis 

images. Assuming that one of these basis images is the 

Gaussian, its representation coefficient can be calculated for 

various sampling intervals, as shown in Figure 4. The key 

point, however, is that utilizng the abovementioned results; 

one can also extract the maximum potential approximation 

error induced by the sampling process in advance. Based on 

that information, a proper decision can then be made. It is 

evident from Figure 4, that a sampling interval of T = 1 is 

insufficient for approximating the repersentation coefficient 

of the original images with regard to the Gaussian image. 

T = 0.5 is however sufficient, and there is no need to con-

sider smaller sampling intervals such as T = 0.1. 
 



7. CONCLUSIONS 

The results presented in this paper are applicable to digital 

signal and image processing systems, in which proper repre-

sentation of time-continuous signals is required, while hav-

ing only the sampled version of originally analogue signals. 

It also enables one to determine the representation error in-

duced by the sampling process of non band-limited signals 

in advance. Our analysis provides also a means for deter-

ming the sufficient sampling rate when a certain level of an 

approximation error is imposed. 

 

Furthermore, our vector-like interpretation suggests an al-

ternative discrete approximation scheme for the inner prod-

uct, which utilizes rather a different sequence than the sam-

pled version of the basis function ϕ(t). This idea is under 

further investigation. 
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Sampling Interval Images 
Inner Product with 

a Gaussian image 

Maximum Potential 

Error 

Original 

  

- - 

T = 0.1 

  

15.18 vs. 16.18 ± 0.268 

T = 0.5 

  

14.64 vs. 15.73 ± 0.61 

T = 1 

  

14.89 vs. 15.68 ± 0.857 

Figure 4: An example, utilizing Theorem 2. It is evident, that a sampling rate of T = 1 is insufficient for ap-

proximating the representation coefficient of the original images with regard to the Gaussian image. T = 0.5 is 

however sufficient, and there is no need to consider smaller sampling intervals such as T = 0.1. 
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