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ABSTRACT

The implication of quantized sensor information on filtering
problems is studied. The Cramér-Rao lower bound (CRLB)
is derived for estimation and filtering on quantized data. A
particle filter (PF) algorithm that approximates the optimal
nonlinear filter is provided, and numerical experiments show
that the PF attains the CRLB, while second-order optimal
Kalman filter (KF) approaches can perform quite bad.

1. INTRODUCTION

Quantization was a well studied topic in digital signal pro-
cessing (DSP) decades ago [1], when the underlying reason
was the finite computation precision in micro-processors. To-
day, new reasons have appeared that motivate a revisit of the
area:

• Cheap low-quality sensors have appeared on the mar-
ket and in many consumer products, this opens up for
many new application areas for embedded DSP algo-
rithms where the sensor resolution is much less than the
micro-processor resolution.

• The increased use of distributed sensors in sensor net-
works with limited bandwidth.

• Some sensors are naturally quantized such as radar range,
vision devices, cogged wheels to measure angular speeds
etc. With increased performance requirements, quanti-
zation effects become important to analyze.

• The renewed interest in nonlinear filtering with the ad-
vent of the particle filter [2] enables a tool to take quan-
tization effects into account in the filter design.

In these cases, one can regard the sensor readings as
quantized. All sub-sequent computations are done with
floating point precision, or in fixed-point arithmetics with
adaptive scaling of all numbers, which means that internal
quantization effects can be neglected. Thus, the quantiza-
tion effects studied in this paper differ from the ones studied
decades ago [1].

2. PARAMETER ESTIMATION AND
INFORMATION BOUNDS

2.1 Information Bounds

In the sequel, the analysis is heavily based on expressions
involving gradients of scalar functions or vector valued func-
tions:
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The Laplacian for g(x, y) with x ∈ R
n, y ∈ R

m is defined as

∆x
yg(x, y) = ∇y(∇xg(x, y))T , g : R

n × R
m 7→ R. (2)

For an unbiased estimator, E (x̂) = x, the Cramér-Rao
lower bound (CRLB), [3–5], is given by

Cov (x − x̂) = E

“

(x − x̂)(x − x̂)T
”

� J−1(x), (3a)

J(x) = E (−∆x
x log p(y|x)) , (3b)

where J(x) denotes the Fisher information matrix (FIM) for
the measurement y regarding the stochastic variable x. Also
note that an equivalent representation of the information,
[4], is

E (−∆x
x log p(y|x)) = E

“

∇x log p(y|x)(∇x log p(y|x))T
”

,

(4)

Particularly, a Gaussian likelihood p(y|x), with measurement
covariance R, gives

J(x) = HT (x)R−1H(x), where HT (x) = ∇xhT (x). (5)

2.2 Quantization

Consider now the problem of estimating x from the quan-
tized measurements y = Qm (x + e). Explicit expressions
for the information for Gaussian noise are derived in the se-
quel. In this paper the quantization function is restricted to
the case of uniform amplitude quantization. In principle, it
is implemented as the midriser quantizer, as described in [6].
If not saturated it is given as

Qm (z) = ∆
j z

∆

k

+
∆

2
. (6)

Here, Qm (·) denotes the nonlinear quantization mapping
with m-levels. The ⌊·⌋ operator rounds downwards to the
nearest integer. To keep a unified notation with the sign
quantization Q1 (z) = sign(z), the midriser convention will
be used, so y ∈ {−m∆+∆

2
, . . . , (m−1)∆+∆

2
}, with ∆ = 2−b,

using b bits, 2m = 2b levels and 2b − 1 thresholds. The sign
quantization corresponds to b = 1, m = 1 and ∆ = 2 in this
notation.

2.3 The Uniform Additive Approximation

One simple but approximative way to analyze attainable
performance of estimators using quantized measurements is
based on the assumption of approximating quantization with
additive independent uniform noise di, [7],

yi = Qm (zi) = Qm (h(xi) + ei) ≈ h(xi) + ei + di. (7)

The independence assumption is not true, but if the variance
of the noise ei is much larger than the quantization resolu-
tion (Var (ei) = σ2 ≫ ∆2), then this is still a reasonable
assumption. Another drawback is that this approach does
not include the saturation effects, so in principle m = ∞ is



assumed. The information in one measurement is thus with
this approximation

Japprox(x) =
1

σ2 + ∆2

12

. (8)

The true information depends on x and includes saturation
effects.

2.4 Exact Information After Quantization

2.4.1 Sign Quantizer

In this section the Fisher information for the sign quantizer
is derived.

Theorem 1 Consider the sign quantizer

y = Q1 (x + e) = sign(x + e), e ∈ N(0, σ2). (9)

The Fisher information is

J1(x) =
e
− x2

σ2

2πσ2

1

(1 − ̺ (−x/σ))̺ (−x/σ)
, (10)

where ̺ (x)
△

= Prob (X < x) denotes the Gaussian distribu-
tion function.

Proof: see [8].

2.4.2 Multi-Level Quantization

The sign quantizer can be generalized to the multi-level
quantization case.

Theorem 2 Consider the multi-level quantizer.

y = Qm (x + e) , e ∈ N(0, σ2). (11)

The Fisher information is
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Proof: see [8].
The following example illustrates how the information

and thus the CRLB depends on the quantization level.

Example 1 (CRLB – Multi-level quantizer) In
Fig. 1, the Fisher information Jm(x) is illustrated by plot-

ting the lower bound J
−1/2
m (x) on the standard deviation for

different quantization levels ∆ = 2/m. Here, the midriser
quantizer with additive noise, y = Qm (x + e) , e ∈ N(0, σ2)
is used with σ = 0.1.

2.5 ML-based Estimation

The set of quantized measurements will be denoted Yt =

{y
(i)
t }N

i=1 and the non-quantized set Zt = {z
(i)
t }N

i=1.
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Fig 1: Fisher information used to compute the standard de-

viation lower bound J
−1/2
m (x) as a function of x for different

quantization levels ∆ = 2/m.

2.5.1 ML for Sign Quantization

Form the log-likelihood as

log p(Y|x) = log
N

Y

i=1

p(y(i)|x) =
N

X

i=1

log p(y(i)|x) =

=N− log ̺ (−x/σ) + N+ log(1 − ̺ (−x/σ)), (13)

where N− and N+ denote the number of terms with y(i) =
−1 and y(i) = +1 respectively, so that N− + N+ = N . Max-
imizing the expression by differentiation yields

̺
“

−xML/σ
”

=
N−

N− + N+
=

N−
N

. (14)

Since the left hand side is a monotone and increasing func-
tion, the estimate, x̂ML, can be found with a line search.
For more information on sign quantizers, see for instance [9],
where the ML and CRLB for the frequency are calculated
for a sinusoidal in noise.

2.5.2 ML for Multi-Level Quantization

The log-likelihood for multi-level quantization is

log p(YN |x) =

N
X

i=1

log p(y(i)|x) =

m
X

j=−m

Nj log pj(x), (15)

where Nj is the number of occurrences of each y(j), so that
P

j Nj = N . The ML estimate is here found numerically by

searching for maximum of (15). The probability pj(x) for
j = −m + 1, . . . , m − 1 is given in [8] as

pj(x)
△

= Prob

„

y = j∆ +
∆

2

«

= Prob (j∆ < x + e ≤ (j + 1)∆)

= ̺

„

(j + 1)∆ − x

σ

«

− ̺

„

j∆ − x

σ

«

. (16a)



The probability at the end points are calculated as

p−m(x) = ̺

„

−m∆ − x

σ

«

, (16b)

pm−1(x) = 1 − ̺

„

m∆ − x

σ

«

. (16c)

3. STATE ESTIMATION AND INFORMATION
BOUNDS

For dynamic systems the following model is considered

xt+1 = f(xt, wt), (17a)

zt = h(xt) + et, (17b)

yt = Qm (zt) . (17c)

The Bayesian solution to the estimation problem is given by,
[10],

p(xt+1|Yt) =

Z

Rn

p(xt+1|xt)p(xt|Yt) dxt, (18a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (18b)

where p(xt+1|Yt) is the prediction density and p(xt|Yt) the
filtering density. The problem is in general not analytically
solvable. There are two fundamentally different ways to ap-
proach filtering of nonlinear non-Gaussian dynamic systems:

• The extended Kalman filter (EKF), [11], that is the sub-
optimal filter for an approximate linear Gaussian model,
or the optimal linear filter for linear non-Gaussian sys-
tems.

• Numerical approaches, such as the particle filter (PF)
[2, 12], that give an arbitrarily good approximation of the
optimal solution to the Bayesian filtering problem.

3.1 Posterior CRLB

The theoretical posterior CRLB for a dynamic system is an-
alyzed in [12–15]. Here, a quantized sensor using the system
in (17) is considered. From [15], the posterior CRLB is

Cov
`

xt − x̂t|t
´

= E

“

(xt − x̂t|t)(xt − x̂t|t)
T

”

� Pt|t, (19)

where Pt|t can be retrieved from the recursion

P−1
t+1|t+1 = Q−1

t + Jt+1 − ST
t

“

P−1
t|t + Vt

”−1

St, (20)

where

Vt = E (−∆xt
xt

log p(xt+1|xt)) , (21a)

St = E
`

−∆
xt+1
xt log p(xt+1|xt)

´

, (21b)

Q−1
t = E

`

−∆
xt+1
xt+1 log p(xt+1|xt)

´

, (21c)

Jt = E (−∆xt
xt

log p(yt|xt)) . (21d)

Hence, the measurement quantization effects will only af-
fect Jt, which is given by Theorem 2. For linear dynamics
with additive Gaussian noise

xt+1 = Ftxt + wt, (22)

the following holds

Vt = FtQ
−1
t F T

t , St = −F T
t Q−1

t , (23)

where Cov (wt) = Qt.

3.2 Kalman Filter for Measurement Quantization

Consider the following linear Gaussian model with quantized
observations:

xt+1 = Ftxt + Gtwt, Cov (wt) = Qt,

zt = Htxt + et, Var (et) = σ2,

yt = Qm (zt) .

In the sequel the quantized measurement, yt, is treated as a
scalar, but the multi-variable case is covered as long as the
measurement noises et,i are independent, using measurement
update iterations in the Kalman filter (KF). A sub-optimal
EKF approach is based on that quantization can be approxi-
mated as additive noise as done in (7). Hence, the likelihood
can be evaluated as

p(zt|xt) = pẽt(zt − h(xt)), (24)

where ẽt = et + nt. Hence, for linear systems, the optimal
linear filter is given by the Kalman filter with

Rt = σ2
t +

∆2

12
I, (25)

where I is the identity matrix. In [16] the finite word-length
for Kalman filter implementation is discussed in more detail.

3.3 Particle Filter for Measurement Quantization

The particle filter, [2, 12], here adopted to quantized mea-
surements is given in Alg. 1. Quantization is treated formally
correct using its theoretical likelihood in (26).

Alg. 1 The particle filter.

1: Set t = 0. For i = 1, . . . , NPF, initialize the particles,

x
(i)

0|−1 ∼ px0(x0).

2: For i = 1, . . . , NPF, evaluate the importance weights

γ
(i)
t = p(yt|x

(i)
t ) according to the likelihood

p(yt|xt) = pj(xt), (26)

where pj(x) is given in (16).
3: Resample NPF particles with replacement according to,

Prob(x
(i)

t|t = x
(j)

t|t−1) = γ̃
(j)
t ,

where the normalized weights are given by

γ̃
(i)
t =

γ
(i)
t

PNPF

j=1 γ
(j)
t

.

4: For i = 1, . . . , NPF, predict new particles according to

x
(i)

t+1|t ∼ p(xt+1|t|x
(i)
t ).

5: Set t := t + 1 and iterate from step 2.

For hardware implementations, for instance on efficient
resampling algorithms and on the complexity and perfor-
mance issue for quantized particle filters, see [17, 18]. In
[19, 20] the particle filter method is proposed for a sensor
fusion method involving quantization, and in [21] smoothing
and quantization for audio signals are considered.



Example 2 (Filtering – sign quantizer) Consider the
following scalar system with a sign quantizer

xt+1 = Ftxt + wt, x0 = 0,

yt = Q1 (xt + et) ,

where

Ft = 0.95, Qt = Var (wt) = 0.102, Rt = Var (et) = 0.582.

In Fig. 2 the root mean square error (RMSE) for the KF
and the PF are presented using 200 Monte Carlo simulations.
The measurement noise in the KF was adjusted in the filter
as described in (25). The PF used the correct sign quantized
likelihood using 1000 particles. The theoretical CRLB is also
given in Fig. 2, as the solution to (20), which for a general
case can be solved using a discrete algebraic Riccati solver.
For the scalar case in this example, the covariance (P ) can
be derived analytically as the solution to

P 2 + (QJ + 1 − F 2)/(JF 2)P − Q/(JF 2) = 0,

where Jt = 2
πσ2 is given in (10), assuming that the evaluation

is around x = 0.
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Fig 2: RMSE for the PF and KF for a linear Gaussian system
with a sign quantizer in the measurement relation, compared
with the CRLB limit.

4. CONCLUSIONS

The implication of quantization on Bayesian and likelihood
based approaches to filtering has been studied. A detailed
study on the Cramér-Rao lower bound and maximum like-
lihood estimation was given. Several theoretical results and
examples are presented. Finally, a dedicated particle filter
was given that applies to arbitrary filtering problems, where
independent quantized measurements are given. The parti-
cle filter with correct likelihood for quantization attains the
Cramér-Rao lower bound, and it is superior to the approxi-
mative solution from the Kalman filter.
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