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ABSTRACT
A maximum-likelihood channel estimator for the orthogo-
nal frequency division multiplexing (OFDM) communica-
tion environments, in presence of interference is discussed
here. We study a training based scenario, where the chan-
nel is estimated based on pilots that precede the transmis-
sion of the information. To reduce the number of estima-
tion parameters, we estimate the channel iteratively in time-
domain. Since interference from other users provides no use-
ful information we do not estimate parameters of the inter-
ference and neither we neglect the affect of the interference
instead interference along with Gaussian noise is perceived
as non-Gaussian noise. The algorithm assumes no apriori
knowledge about the interfering channel and signal at the re-
ceiver, further no-assumption on the statistical properties of
the interferer is assumed which makes this algorithm robust.
The estimated channel information along with the estimated
distribution are then utilized to equalize the subsequent data
blocks.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
promising multi-carrier digital communication technique for
transmitting data at high bit-rates over wireless or wire-line
channels. The high-speed serial data is converted into many
low bit rate streams that are transmitted in parallel, thereby
increasing the symbol duration and reducing the intersymbol
interference (ISI). These features have led to an increase in
the use of OFDM or related techniques in many high bit rate
communication systems. Discrete multi-tone modulation
which is quite similar to OFDM is extensively used in digital
subscriber line (xDSL) communication systems. OFDM has
been chosen for digital audio broadcasting (DAB) and digi-
tal video broadcasting (DVB). It is also used for the 2.4 GHz
wireless local area networks (IEEE 802.11g).

Coherent OFDM transmission invariable requires estima-
tion of the channel frequency response (i.e. the gains of the
OFDM tones). Currently there can be three possible solu-
tions: 1) blind, 2) semi-blind, and 3) pilot aided. In blind
channel estimation techniques, the channel is estimated with-
out the knowledge of the transmitted sequence. It is attrac-
tive as the throughput is higher as no bits are lost in training.
However it requires large amount of data to be stored before
channel estimation can begin, which invariably introduces
delays. The pilot based technique estimates the channel
by transmitting a known (at the receiver) training sequence
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along with the unknown data at the receiver. The receiver
estimates the channel using some criterion based on compar-
ing the change in these pilots due to channel. The semi-blind
techniques try to reduce the size of the training sequence by
exploiting both the known and the unknown (blind) portions
of the data.

Channel estimation in OFDM is critical to the overall per-
formance of the communication system. Insertion of pilots
in OFDM symbols provides a base for reliable channel esti-
mates. There has been considerable increase in channel esti-
mation research over the years [1], [2] etc. However most of
the current work is based on channel estimation for Gaussian
channels or assuming that the interference is very low. This
assumption is usually based on two reasons: first the inter-
ference to have tractable mathematical models and by central
limit theorem. This assumption is however not always valid
in scenarios where there are a small number of interferers
(e.g. Bluetooth device or microwave oven operating in pres-
ence of a WLAN). With the co-existence of various wireless
equipments in home or office environments the interference
from neighboring devices has become a major concern [3].
In interference affected channels we can be sure that algo-
rithms designed for Gaussian assumption are not optimal [4].
From here on we refer to the traditional Gaussian assumption
estimator (which assumes zero or negligible interference) as
least squares (LS) estimator.

Here we estimate the fading channel in presence of inter-
ference directly in time domain using maximum likelihood
(ML) technique. The channel is assumed to be deterministic
for a given block. The algorithm discussed in [2] specif-
ically deals with the synchronous interference, however it
was noted that interference was modelled as Gaussian, which
may not be the case if only a few (or in fact one major inter-
ferer as in [5]) are present. In this paper we make no such
apriori assumption on the interfering received signal distri-
bution. Moreover no parameter of the interferer is estimated
specifically. In fact, the presence of interference along with
Gaussian noise is jointly considered as a Gaussian mixture
noise [4] and [6]. It is noted that traditional zero forcing
equalization technique fall short of performance in presence
of interference. Simulation results confirm the non-optimal
estimates when LS is used and improved bit error rate (BER)
performance by using the presented algorithm. Throughout
the paper capitalized variables represents frequency domain
values while the bold variables represents vectors. Also ℜ
and ℑ represents real and imaginary part.

The paper is organized as follows. In section-2 the
problem statement is formulated for a general OFDM com-
munication system followed by brief discussion on den-



sity estimation. The iterative non-parametric maximum-
likelihood (NPML) channel estimator is described in section-
3. Section-4 discusses the modified non-parametric symbol-
by-symbol equalizer. To test the robustness of the algorithm,
in section-5, the simulation results are presented. Conclu-
sions based on analysis and simulation are drawn at the end.

2. FORMULATION OF THE PROBLEM

2.1 OFDM System Model
The baseband equivalent representation of a typical OFDM
system as in Fig-1 is considered here. We focus our dis-
cussion on estimation of one OFDM symbols instead of a
sequence of symbols for the reasons justified below. At
the transmitter side, the serial input data is converted into
M parallel streams, and each data stream is modulated by
a linear modulation scheme, such as QPSK, 16QAM or
64QAM. If QPSK is used, for instance, the binary input
data of 2M bits will be converted into M QPSK symbols
by the serial-to-parallel converter (S/P) and the modula-
tor. The modulated data symbols, which are denoted by
complex-valued variables X

�
0 ����������� X �

m ����������� X �
M � 1 �	� are

then transformed by the IFFT, and the complex-valued out-
puts x

�
0 �	�
������� x �

k ����������� x �
M � 1 � are converted back to serial

data for transmission. A guard interval is inserted between
symbols to avoid inter-symbol interference (ISI). If the guard
interval is longer than the channel delay spread, and if we
discard the samples of the guard at the receiving end, the ISI
will not affect the actual OFDM symbol. Therefore, the sys-
tem can be analyzed on a symbol-by-symbol basis. At the
receiver side, after converting the serial data to M parallel
streams, the received samples y

�
0 �	�
������� y �

k ����������� y �
M � 1 � are

transformed by the FFT into Y
�
0 ����������� Y �

m �	�
������� Y �
M � 1 � [1].

Using the notations for the OFDM symbols, the output of the
channel can be written as

y
�
k ��� L 
 1

∑
l � 0

h � � l � x �
k � l ��� P 
 1

∑
p � 0

L 
 1

∑
l � 0

g �p �
l � up

�
k � l ��� n

�
k �	� (1)

0 � k � M � 1

where h and x represents desired user’s channel and data re-
spectively. Without loss of generality we choose complex
conjugate h � instead of h in above equation [7]. L repre-
sents the channel length and n

�
k � is the additive white Gaus-

sian noise. P represents the number of interferers where
gp and up is the interfering channel and signal respectively.
Note that y

�
k � , x

�
k � , n

�
k � , h

�
l � , up

�
k � and gp

�
l � are all com-

plex valued. It is assumed that the channel and interference
doesn’t change during the block transfer and interference is
synchronous which makes the above representation possible.

If cyclic prefix is used for the guard interval, intercarrier
interference (ICI) in multipath channel can also be avoided.
Then it can be shown that the following simple relation be-
tween Y

�
m � and X

�
m � holds:

Y
�
m ��� �

L 
 1

∑
l � 0

h � � l � exp � 
 j2π ml
M ��� X

�
m �

� �
P 
 1

∑
p � 0

L 
 1

∑
l � 0

g �p � l � exp � 
 j2π ml
M � Up

�
m � � � N

�
m �(2)

� H
�
m � X �

m ��� I
�
m ��� N

�
m ��� 0 � m � M � 1 (3)� H

�
m � X �

m ��� N � � m �	� 0 � m � M � 1 (4)

where H
�
m � is the complex frequency response of the chan-

nel at the subchannel m, I
�
m � be the complex interfer-

ence at that subchannel m and N
�
0 ����������� N �

M � 1 � are the
DFT of n

�
0 �	�
������� n �

M � 1 � . If n
�
0 ����������� n �

M � 1 � are i.i.d.
Gaussian random variables, so are the transformed variables
N

�
0 �	�
������� N �

M � 1 � . It is assumed that the interfering sig-
nals Up

�
0 ����������� Up

�
M � 1 � are also OFDM signals, with same

block and cyclic pre-fix lengths, and they are block syn-
chronous with the desired signal. Eq. (4) shows that the
received signal is the transmitted signal attenuated and phase
shifted by the frequency response of the channel at the sub-
channel frequencies due to fading in presence of interference
and noise [1]. It is assumed to be that noise is represented
as complex independent identically distributed (i.i.d.) with
vector ����� n �

0 ��� n �
1 ����������� n �

M � 1 � � T with each component
of � distributed as !#" �

µi � σ2
i � and are also independent.

The multivariate complex Gaussian pdf is just the product of
the marginal pdf or

f
� �$��� M 
 1

∏
i � 0

f
�
n
�
i ��� (5)

which follows from the usual property of the pdf for real in-
dependent random variables, this can be written as

f
� �%�%� 1

πM ∏M 
 1
i � 0 σ2

i
exp &'� M 
 1

∑
i � 1

1
σ2

i ( n �
i � ( 2 ) (6)

Since the joint pdf depends on ℜ and ℑ only through � , we
can view the pdf to be that of the ‘scalar random variable
n’. This pdf eq. (6) is called a ‘complex Gaussian pdf’
for a scalar complex random variable and is denoted by !" �

0 � σ 2
i � [8].

3. KERNEL DENSITY ESTIMATION

Since we have complex noise and interference we can model
it as a ‘complex Gaussian mixture’ pdf, where the real
and complex are assumed independent as discussed earlier.
Parzen window or kernel density estimation assumes that
the probability density is a smoothed version of the empir-
ical sample. Its estimate f̂

�
y � of a complex random variable

y � ℜ * y +,� iℑ * y + is simply the average of radial kernel func-
tion centered on the points in a sample M of the instance of
y:

f̂
�
y ��� 1

M

M

∑
j � 1

φ
�
y � y

�
j ��� (7)

We here assume φ to be Gaussian kernel (Parzen kernel) [6]:

φ
�
y �-�." �

0 � σ 2 ��� 1/
2πσ 2

exp 0 � ( y ( 22σ 2 1 (8)

variance defined as σ 2. The joint pdf f̂
�
y � depends on the

real and complex components through y, we can view the pdf
to be that of the scalar random variable y, as the notation sug-
gest [8]. Other choices of kernel like Epanechnikov kernel
are also possible. It can be shown that under the right condi-
tions f̂

�
y � will converge to the true density f

�
y � as ( M ( 2 ∞.
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Figure 1: A typical OFDM communication system

4. NON-PARAMETRIC ML CHANNEL
ESTIMATION

The channel impulse response 34�5� h �
0 �	�
������� h �

L � 1 �6� are
independent complex-valued Gaussian random variables
(which represents a frequency-selective Rayleigh fading
channel). In regular OFDM system, the channel delay spread
L is much smaller than the number of subcarriers. This
leads to a high correlation between the channel frequency
responses H

�
m �	� 0 � m � M � 1, even when hl � 0 � l �

L � 1,are independent [1]. We estimate the channel impulse
response 37�8� h �

0 ����������� h �
L � 1 � � directly, as the channel fre-

quency response H
�
0 �	�
������� H �

M � 1 � are generally correlated
among each other (as discussed above) and the impulse re-
sponse may be independently specified, thus the number of
parameters in the time domain is smaller than that in the fre-
quency domain.

The combined interference and AWGN N � � m � in eq. (4)
is together taken as a noise that is non-Gaussian because of
the presence of interference [6]. As also discussed in [6] the
LS estimator does not find the optimal solution in the case
of non-Gaussian noise. If the noise was Gaussian then the
solution to the ML leads to the LS estimate. However, in
communication systems where the noise is non-Gaussian (or
Gaussian mixture) i.e. Gaussian in presence of interference,
no closed form ML solution exists for such non-Gaussian
distributions. Thus we rely on the iterative algorithm to find
the ML estimate of the channel. In this algorithm we first
initialize channel update algorithm with LS estimate, then
we estimate the likelihood on the pilots. After estimating
likelihood we find the ML solution iteratively on the pilot
symbol. The classical stochastic gradient algorithm is used
with a log-likelihood being the cost function i.e. the gradient
here is the first derivative of the log-likelihood function with
a constant multiplier (similar to well known gradient ascent
algorithm) [9]. The update equation is:93 k � 93 k 
 1 � µ

�
k � ∇ :<; � 3 (>= � ( : �@?: k A 1

(9)

where µ
�
k � is the adaptation constant and ∇ : represents the

gradient of the cost function. Referring to eq. (4) and eq. (9)

the likelihood function can be written as:

L
� 3 (�= � ( : �@?: k A 1

� f
� =B( 3$��� M

∏
i � 1

fN C � E �
i �
�

fN C � �D� is scalar pdf of ‘complex Gaussian mixture’ of data
length from i � 1 �
������� M and the previous estimation error is
defined as:

E
�
i ��� Y

�
i �E� �

L 
 1

∑
l � 0

h �k �
l � exp � 
 j2π il

M � � X
�
i � (10)

Kernel density estimators are known to be effective in es-
timating the pdf over short data record and also provide a
differentiable smooth estimated pdf. Using kernel density
estimator we obtain:

f̂N C � E ��� 1
M

M

∑
j � 1

φ
�
E � E

�
j �
� (11)

where M is the number of subcarriers.

ˆ; � 3 (>= �GFF : �@?: k A 1
� M

∑
i � 1

log
�
fN C � E �

i �
���
� M

∑
i � 1

log
M

∑
j � 1

φ
�
E

�
i �H� E

�
j ���E� log ( M ( (12)

Maximizing the log-likelihood function w.r.t to channel
weight vector. By definition of complex vector differentia-
tion [7] we obtain,

∇ : ˆ; � 3 (>= �GFF : �@?: k A 1
� M

∑
i � 1

∑M
j � 1

∂ φ � E � i � 
 E � j �I�
∂ :

∑M
j � 1 φ

�
E

�
i �E� E

�
j �
� (13)

Thereby substituting this gradient in eq. (9) gives an itera-
tive solution. As with any stochastic gradient algorithm the
choice of optimal µ

�
k � varies with application and require-

ments. As discussed in [9] we choose µ
�
k �$� σ 2

M in eq. (9)
(where σ is chosen as in [6]) and witnessed convergence in a
few iterations.

5. NON-PARAMETRIC SYMBOL-BY-SYMBOL
EQUALIZER

Similar to the channel estimator discussed before, the con-
ventional detector (equalizer [1]) is based on the Gaussian
assumption that is again not optimal for the interference af-
fected channels. The performance of this zero-forcing equal-
izer [1] is highly sensitive to the quality of estimated chan-
nel and the ratio of interfering received signal with estimated
channel. Thus for the said equalizer structure the decision
boundary is clearly non-linear. Thereby we use a probabilis-
tic equalizer whose decision is based on the estimated likeli-
hood. For the estimated channel impulse response

93�J (after
convergence) from eq. (9) the ML estimate of the transmitted
signal can be obtained by

X̂
�
m �K� argmaxX � X̂

�
f̂E

�
Y

�
m � ( Ĥ �

m �
� FF : �@?: k
(14)

where Ĥ
�
m � is the frequency response of the estimated chan-

nel and without loss of generality it is assumed that X is



equi-probable. It should be noted that estimated pdf f̂E for
detection is generated by using eq. (11). Based on the
higher probability of occurrence the hard-decision is taken
on X̂

�
0 �	��������� X̂ �

M � 1 � to generate the output data as shown
in Fig-1. From simulation results we observe that signifi-
cant BER improvement is achieved by using this probabilis-
tic equalizer.

6. SIMULATION RESULTS AND DISCUSSION

We assume a packet based OFDM system (similar to
WLAN), we assume that the first symbol is known at the
receiver hence used for channel estimation, while the re-
maining payload is the useful information. A multi-path fad-
ing channel model is considered with synchronous multipath
OFDM interference as in eq. (2). The model is considered
slowly fading, i.e. the channel is constant for the OFDM
packet (of size 64-subcarriers and 8-symbols). To verify the
robustness of the algorithm, simulations were carried out on
Matlab for ensemble of 1000-runs. The performance mea-
sure is average BER for fixed signal to noise ratio (SNR) and
for various values of signal to interference ratio (SIR). The
SIR is defined as SIR �#LNM � HX � � HX �IO�PLNM II O P . The channel is defined
as two-path Rayleigh fading channel with transfer function
[1]:

h
�
z ��� 0 � 8α0 exp

�
jθ0 ��� 0 � 6α1 exp

�
jθ1 � z 
 1 (15)

The interfering channel is defined as:

g
�
z ��� 0 � 5α2 exp

�
jθ2 ��� 0 � 1α3 exp

�
jθ3 � z 
 1 (16)

where α0, α1, α2, α3 are the i.i.d random variables with
Rayleigh distribution, and θ0, θ1, θ2, θ3 are i.i.d. random
variables with uniform distribution.

The average BER plot is shown in Fig-2. The leg-
ends ‘LS’ and ‘NPML’ represents least squares and non-
parametric maximum likelihood channel estimator respec-
tively, when the detection for both algorithms is based on
Gaussian assumption. ‘Exact’ represents the BER when it is
assumed that the receiver has exact knowledge of the chan-
nel and the detection is based on Gaussian assumption. For
lower two legends ‘NPML-Det’ and ‘Exact-Det’, suffix ‘Det’
stands for when the detection is based on estimated density,
whereas the channel is estimated by NPML in ‘NPML-Det’
and channel is assumed known at the receiver for the ‘Exact-
Det’. The SNR is kept fixed at 17.63 dBs while SIR is var-
ied over a large range. From the simulations we find, there
is negligible BER improvement when detection is based on
Gaussian assumption, moreover exact knowledge of chan-
nel also does not improve the BER performance because of
interference and channel ratio effect at detector. However
significant BER improvement is obtained by using the non-
parametric symbol-by-symbol equalizer. It is also worth not-
ing that there is a little difference when this equalizer is used
with ‘NPML’ and exact channel knowledge, this also con-
firms that the estimated channel using ‘NPML’ is closer to
the exact channel. It is also interesting to see that the BER
curves follow the pattern as noted in [6].

7. CONCLUSION

It is shown that the channel estimator based on Gaussian
noise assumption are inferior in interference affected chan-
nels. This non-Gaussian noise was estimated using kernel
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Figure 2: Average BER performance in multipath fading
channel

density estimator to estimate the likelihood function. A new
channel estimation and symbol detection scheme was pre-
sented using the estimated density. Significant performance
gains were achieved for multipath fading scenarios. It was
also highlighted that major performance gain is achieved by
using the proposed non-parametric symbol-by-symbol equal-
izer in interference limited channels.
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