
 
 

 

ABSTRACT 
One of critical problem causing death of humankind is 
heart disease. To help Medical doctors to find patient 
heart conditions and monitoring their body’s signals, 
several electronic devices have been developed over 
several decades. Among different methods used for these 
purposes, Ballistocardiography (BCG) has an interesting 
measurement feature that no electrodes are needed to be 
attached to the body during recording. Therefore, it is 
provides a strong potential possibility to evaluate the patients 
heart condition in the home, car, or his office. In this 
research, we used Shift Invariant Daubechies wavelet 
transform to extract essential BCG features and Artificial 
Neural Networks to classify them. The results show that our 
method using wavelet transform and neural network classifier 
has a reliable and high performance, no sensitive to BCG 
waveform latency as well as non-linear disturbance. 
Moreover, the wavelet transform requires no prior 
knowledge of the statistical distribution of data samples and 
the computation complexity and training time are reduced. 
 

1. INTRODUCTION 
Ballistocardiography is one of the newest clinical tools for 
diagnosing, monitoring and managing myocardial disorders 
related to heart disease.  The disorders because of disease are 
characterized by sudden recurrent and transient disturbances 
of myocardial function and/or mechanical movements of the 
heart. The presence of any abnormal disorders in the 
Ballistocardiogram (BCG) confirms heart diagnosis, which 
sometimes can be confused with other disorders because of 
some special situation for subject producing similar 
disturbances in BCG. An example of BCG waveform is 
shown in Fig. 1 [1]. During the past several years, a large 

number of Bio-signal classification methods have been 
developed, including single and multi channel template 
matching, principle component analysis, amplitude 
separation, Fourier analysis, linear filtering autoregressive 
modeling, neural networks, and maximum likelihood. Some 
of methods used for BCG features Extraction and 
classification have been reviewed by Xinsheng Yu [2]. Most 
of the existing methods perform very well when the problem 
of Motion artifacts, and BCG waveforms latency as well as 
non-linear disturbance such as electrical drifting of electronic 
devices and adding noises with different recourses to recorded 
signal is not considered. However, methods that do not deal 
with such an important issue may potentially give us untrue 
information about patient. Other limitations of the existing 
techniques concern their degree of success in the case of 
special situation of subject such as stress, their ease of 
hardware and/or software implementation, their portability 
across platforms, and their suitability for real-time processing. 

 
 We have proposed some new method of BCG features 

extraction and classification using a well-known artificial 
neural network (ANN) so-called Multi-Layer Percepteron 
(MLP). To recognize the most important BCG features and 
decreasing information redundancy and presenting to ANN 
for signal classification, the shift-invariant wavelet transforms 
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Fig. 1. Example of  BCG signal including spikes, and wave complexes 
called G,H,I, J, K, L, M, and N components[1]. 



 
 

 

also have been used. We used 6 subjects including to these 
categories: young healthy, old healthy and old men with some 
infarct in their heart. 

 
2. PROCEDURES 

2.1 Overview 
As can be seen in Fig. 2, our suggested procedure includes 

three stages: 1- BCG segmentation stage to extract BCG 
cycles and specify its waveforms; 2- The BCG features 
computing using shift-invariant wavelet transform to 
eliminate not importance or disturbances of BCG waveforms 
as well as reducing dimension of ANN inputs; 3- 
Classification stage to clarify class of every BCG spike and 
clustering them using artificial intelligence. The segmentation 
stage only uses R spike of ECG signal and amplitude 
separation/threshold detecting method to extract templates. 
Well-known artificial neural networks (ANN) so-called 
Multi-Layer Percepterons (MLP) have been used to classify 
BCG Waveforms. Moreover, the ECG signal in segmentation 
stage is only for extraction of BCG templates not for 
classification purposes. 

2.2 BCG cycles Extraction Using ECG R Spike and the 
amplitude separation method (Segmentation Stage) 

The BCG data set used in this study was provided by 
ProHemon research team located at Tampere University 
hospital and Tampere University of Technology-Digital Media 
institute using a chair fitted with Electro-Mechanical Sensor 
so-called EMFI and a Data acquisition so-called CircMon 
developed by Jr Medical Ltd, Tallinn/Estonia [1,3,4].The 
signals was sampled at 200 samples/Second from the seat 
of the chair in a clinical trial. During the BCG recording, the 
references ECG signal were recorded simultaneously form 
the chest of subject’s body at the same sampling rate. Fig.3 
shows one typical recording of BCG and ECG records of a 
young healthy man. The R-Component of the ECG signal is 
used to identify each BCG cycle using amplitude/ threshold 
separation method to extract BCG waveforms into a unique 
250 points window size. The BCG cycles are filtered to 
reduce the background noise and were then normalized into 
the range [0, 1]. Altogether, there are 6 normal subjects, 

who were included to three categories: young healthy, old 
healthy and old men with some infarct in their heart. 

2.3   Computing BCG Features Based on Shift-Invariant  
Daubechies compactly supported Wavelet Transform 

The suggested high-resolution method for features 
computing is using a special kind of wavelet, called on Shift-
Invariant Daubechies compactly supported Wavelet 
Transform [5,6,7,8]. The properties of this kind of wavelet are 
good for our application because we would like to reduce 
optimally dimension of BCG cycle and not effecting phase or 
shifting of waveforms in our method’s performance.  
 
2.3.1 Trous- Fast Wavelet Transform (T-FWT) [5,7,8]     
To implement shift invariant wavelet transform, an algorithm 
called Trous is presented in [5,7,8]. Suppose 0[ ]a n  is a 

sequence of input signal samples. For >0j , we denote: 

[ ] ( ) ( )ja n f t n t dtψ
+∞

−∞

= −∫ , where ψ  is wavelet base. The 

dyadic wavelet coefficients are computed for >0j over the 
integer grid 

 )(),(),()( 2 nttfknwfnd j
j −== ψ  

For any filter [ ]x n , we denote by [ ]jx n  the filters obtained 

by inserting 2 1j −  zeros between samples of [ ]x n  with 

Fourier transform equal to )( ωjkX . Inserting zeros in the 

samples of [ ]x n creates holes. Now, let [ ] [ ]j jx n x n= − . By 
using the following equation, we can compute a dyadic 
wavelet transform and its inverse: 

1[ ] [ ]* [ ]ij ja n a n h n+ = ,   1[ ] [ ]* [ ]j jg n a n g n+ = . 

Filter [ ]h n  so-called conjugate mirror filter is a low-pass 
filter and hence only low frequency components can pass 
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Fig. 2.Block diagram of our system to classify BCG data to three classes. 
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Fig. 3. ECG and BCG records of a Filtered Normal young subject using 
Band pass filter [1, 45] for ECG & [1, 10] HZ for BCG. As can be seen, 
there are some motion artifacts in BCG signal, not being possible to 
remove using filtering. 



 
 

 

through it; on the other hand [ ]g n  is a high-pass filter to pass 
high frequency components. The dyadic wavelet 
representation of signal 0a  is defined as the set of wavelet 

coefficients up to a scale Jk plus the remaining low-
frequency information Ja : 1{ } ,j j J Jd a≤ ≤⎡ ⎤⎣ ⎦ . Fig. 4 shows 

block diagram of such operations, where 2logJ N=  and 
[ ]x n%  is the duality of [ ]x n .  

 
2.3.2  Daubechies compactly supported Wavelets [5,7,8]: 
The h, and g filters that we used in this paper are constructed 
form a strong wavelet bases so-called daubechies wavelets. 
These bases are orthogonal wavelets and have less 
information redundancy than other wavelet transforms. 
Daubechies wavelets have a support (width) of minimum size 
for any given number of vanishing moments (P). Definition of 
vanishing moments is: ψ  (wavelet base) has P vanishing 

point if pkfordttt k <≤=∫
+∞

∞−

00)(ψ . The number of 

vanishing moments of ψ  affects in increasing number of 
negligible and almost zero wavelet coefficients.   
 
 2.3.3 BCG Features computing using Shift-Invariant 
Daubechies  Wavelets with P=2 : 
In this research work we used shift invariant Daubechies 
Wavelets with P=2 (db2) and Trous algorithm (Fig.4) to find 
wavelet coefficient of every BCG cycle [ ]x n  at level 6. Our 
practical experiences showed that using p=2 is enough and 
the most important features of BCG waveforms were saved at 
level 6 of iteration T-FWT. It is possible to decrease cycle 
dimension (N) from 250 to 4 by saving only local maxima 
coefficients without losing important information [5,7,8]. Fig 
5 shows wavelet coefficients at 2 different levels for a typical 
wavelet waveform. Moreover, the results for 6 typical 
subjects are showed in Fig.6. 

2.4  BCG Spike Classification Using Multi-Layer 
Percepterons (MLP)  Artificial Neural Network [8,9] 

Multilayer perceptrons (MLPs) are feed forward neural 
networks trained with the standard back propagation 
algorithm. They are supervised networks so they require a 
desired response to be trained. They learn how to transform 
input data into a desired response, so they are widely used for 
pattern classification. With one or two hidden layers, they can 
approximate virtually any input-output map. They have been 
shown to approximate the performance of optimal statistical 
classifiers in difficult problems. Most neural network 
applications involve MLPs.  

3. RESULTS 
To demonstrate performance of approaches and comparing 

results, we used MLP Neural Networks with 4 inputs, Tanh() 
to simulate non-linearity of neurons, two hidden layer 
(relatively 15, and 10 neurons), and 3 outputs for classifying 6 
subjects to 3 categories: young healthy students with age 
between 20-30 years old (2 subjects), old healthy men with 
age between 50-70 years old (2 subjects) and two old Subjects 
(50-70 years old) with some infarct in their hearts.  

For every subject of three categories, the previous stage 
(Wavelet Decompositions) give us features of the every BCG 
cycle (dimension of data reduced from 250 to 4). These data 
are normalized, mapping to area [-1, 1], and finally saved 
randomly in unique data matrix. We used small part of data 

 
 
Fig. 4. (a). Fast Wavelet Transform (FWT) algorithm to find coefficients 
based on repeatable method using contracted filters. 
(b). Signal reconstruction based on repeatable method using contracted 
filters. 
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Fig. 5. Local maxima Wavelet coefficients at 2 different levels for a 
typical wavelet waveform 

 
Fig. 6. 3-D Representation of BCG cycles Daubechies Wavelet 
Coefficients (level 6) for 6 subjects of 3 categories: Young Normal, Old 
Normal, and Old Abnormal Subjects. 



 
 

 

for training Artificial Neural Network (ANN) and rest of data 
for testing performance of ANN classifier, not using same 
data for training or testing the system. Table 1 shows 
performances of approaches. It has been seen that the 
performance of our developed system is very high and can be 
used in diagnosing applications using BCG signal. According 
to the our experiences, some of BCG waveforms have latency 
or non-linear disturbance such as motion artifacts and electro-
mechanical drifts, but the proposed method in this paper, as 
shown in table 1, is able to discriminate them with high 
accuracy. 

4. CONCLUSION 
To discriminate BEG features, researchers have presented 

different methods. Most of the Existing methods have high 
accuracy in the BCG features discrimination whilst not 
considering BCG waveforms have latency or non-linear 
disturbance such as motion artifacts and electro-mechanical 
drifts/noises. However, ignoring these kinds of important 
issues may potentially give us untrue information about 
patients. In this paper, we developed approaches, which have 
very high performance, even for the case of non-linear 
disturbance or latency. In our approach to overcome these 
kinds of phenomena, we used very strong time-frequency 
signal processing/feature extraction method so-called Shift 
invariant Daubechies compactly supported Wavelets. 

Truly BCG cycles classification is very important in 
finding intensity of disease and the kind of it. The first stage 
of our diagnosing system is segmentation stage using R-
components of ECG signal of the same subjects. To reduce 
dimension of BCG waveforms as well as 
eliminating/decreasing latency, and non-linear disturbances, 
the Daubechies compactly supported Wavelet transforms are 
used as second stage (pre-processing stages). Neuro-classifier 

(MLP NET) is used to classify BCG cycles. The result 
showed that this classifier-multi-layer network has very high 
performance, even with non-linear disturbance or latency. It 
should be mentioned that the developed method in this paper 
is not limited to BCG data classification and can be used to 
other examples of signal processing such as evoke potentials, 
EEG, EOG, and EMG.  
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TABLE 1 
RESULTS OF BCG CLASSIFICATION USING NEURAL NETWORKS AND BCG 

CYCLES IN FIG. 4. SHIFT-INVARIANT DAUBECHIES WAVELET 
TRANSFORMS ARE USED FOR COMPUTING BCG WAVEFORMS FEATURES  

 Class1 Class2 Class3 
 

Overall 

SBJ1 100% - - Class  1 

SBJ2 97% 3% - 

SBJ1 - 90% 10% Class 2 
SBJ2 - 87% 13% 
SBJ1 - 34% 66% Class 3 
SBJ2 - 12% 88% 

 

Overall  92% 

 
SBJ=Subject, Every cell show correct classification percentage for 

every class; Class 1: Young healthy student with age between 20-30 
years old (2 subjects), Class 2: Old healthy men with age between 50-70 
years old (2 subjects), class 3: Two old Subjects (50-70 years old) with 
some infarct in their hearts, Overall (%): performance computed using 
randomly selected training and testing BCG data of 6 subjects. 
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