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ABSTRACT

Geometrical transformations bring synchronization prob-
lems into the robust digital data-hiding. Previous works on
this subject were concentrated on the robustness to particu-
lar geometrical transformations. In this paper, the achievable
rates of reliable robust data-hiding in channels with geomet-
rical transformations are investigated from an information-
theoretic point of view for theoretical set-ups, where lengths
of data sequences asymptotically approach infinity.

1. INTRODUCTION

Digital data-hiding is the art of information communication
by embedding it into some digital multimedia documents.
Being embedded this information should be reliably decod-
able even some intentional and unintentional attacks were ap-
plied to the marked document. Geometrical transformations
belong to a class of such attacking strategies that lead to the
significant complication or even complete failure of the de-
coding due to the desynchronization between the encoder and
the decoder.

Although geometrical transformations are easily imple-
mentable, the decoder in a classical communications set-up
without a synchronization framework has to perform decod-
ing by considering all possible geometrical transformations.
Low computational complexity of implementation for the at-
tacker in contrast to the high computational complexity of
recovery for the data-hider makes the issue of geometrical
transformations a fundamental challenge in the design of ro-
bust data-hiding systems.

In previous research on the robust data-hiding in chan-
nels with geometrical transformations, the main focus was
on the robustness to a particular class of geometrical trans-
formations, like general affine transformation [1], [2] and to
geometrical transformations on the local level [3]. However,
the analysis of achievability of reliable robust data-hiding
that is measured in terms of probability of decoding error
has not been studied yet. Thus, the aim of this paper is to
perform an information-theoretic analysis of the robust data-
hiding under geometrical attacks from the point of view of
the achievable rate. The analysis is carried out for the theo-
retic set-ups, where the lengths of communicated sequences
asymptotically approach infinity.

The rest of the paper is organized as follows. In Sec-
tion 2, information-theoretic analysis of data-hiding is per-
formed. Afterwards, in Section 3, modeling of geometrical
attacks is considered. In Section 4, achievability of data-
hiding in channels with geometrical transformations is inves-
tigated. Conclusions and future research directions are given
in Section 5.

Notations. We use capital letters X to denote scalar ran-
dom variables, bold capital letters X to denote vector random
variables, corresponding small letters x and x to designate
the realization of scalar and vector random variables, respec-
tively. The superscript N is used to denote length-N vectors
x = xN = {x[1],x[2], . . . ,x[N]} with ith element x[i]. We use
X ∼ pX(x) or simply X ∼ p(x) to indicate that a random vari-
able X is distributed according to pX (x). Calligraphic fonts
X denote sets X ∈X and |X | denotes the cardinality of the
set X . Z and R stand for the sets of integers and real num-
bers, respectively. H(X) denotes the entropy of a random
variable X and I(X ;Y ) designates the mutual information be-
tween random variables X and Y .

2. INFORMATION-THEORETIC ANALYSIS OF
DATA-HIDING

Block diagram of a generic data-hiding is presented in Fig.
1.

Figure 1: Communication set-up for data-hiding.

A stego data y ∈ Y N of length N is obtained by adding
a watermark sequence w ∈ W N to a cover data x ∈ X N ac-
cording to:

Y = W+X. (1)

W is generated by the encoder based on the message in-
dex M that is uniformly distributed over the set M =
{1,2, . . . , |M |}, where |M | = 2NR, the key K ∈ K =
{1,2, . . . , |K |}, and, possibly, the cover data X. R =
1
N log2 |M | is the rate of communications.

The realization of the key determines a particular code-
book to be used at both encoder and decoder during com-
munications. The codebooks are generated randomly and re-
vealed to the encoder and the decoder with the knowledge of
corresponding keys.

Depending on whether or not non-causal host state infor-
mation X is taken into account in the watermark sequence
generation, the random binning and the random coding are
used for codebook design, respectively. In the random cod-
ing, Fig. 2 [4], the encoder sends the codeword W(M,K),
which corresponds to a particular value of M in the codebook
determined by K, as the watermark sequence. In the random
binning, Fig. 3 [5], in the codebook defined by K, the en-
coder looks in the bin determined by M for a codeword U,



which is jointly-typical with X [5]. After finding the jointly-
typical (U,X) pair, the encoder maps them to the watermark
sequence W(M,X,K) according to a probabilistic mapping
p(w|u,x).

Figure 2: Communications scenario based on random cod-
ing.

Figure 3: Communications scenario based on random bin-
ning.

The watermark sequence combined with the host data is
sent to the discrete memoryless channel (DMC) that con-
verts the input Y to the output V in a probabilistic man-
ner according to the channel transition probability p(v|y) =

Õ N
i=1 p(vi|yi).

At the decoder, M̂ is decoded from V with the knowledge
of K. In the random coding, the decoder looks through the
codebook defined by K for the codeword W(M̂,K) which
is jointly typical with V. When such a unique codeword
W(M̂,K) is found, the index M̂ is declared as the decoded
message. In the random binning, the decoder looks for a
codeword U that is jointly-typical with V in the K−defined
codebook. When such a unique codeword U is found, the in-
dex M̂ of the bin that contains U is considered as the decoded
message.

3. MODELING OF GEOMETRICAL ATTACKS

When a geometrical transformation TA(.) is applied to Y,
pixel coordinates of Y are modified accordingly1. The result
V of these operations is called the attacked data:

V = TA(Y), (2)

where the subscript A represents the type of the geometrical
transformation applied to Y. Affine, bilinear and projective
transformations are examples of types that A can take.

A can be parameterized by a set of J parameters a =
(a1,a2, . . . ,aJ) such that a∈Z

J 2. For example, when A takes
the form of affine transformation, a pixel at the coordinates

1It should be noticed here that we did not assume memory effects in the
channel due to the intersymbol interference caused by the interpolation.

2In general, one can assume a ∈ R
J .

(n1,n2) in Y, i.e. y[n1,n2], will be transferred to new coordi-
nates (n′1,n

′
2) in V, i.e. v[n′1,n

′
2], according to:

[
n′1
n′2

]
=

[
a1 a2
a3 a4

][
n1
n2

]
+

[
a5
a6

]
. (3)

In this case, a = (a1,a2,a3,a4,a5,a6). If we assume that Fig.
4 represents the space A of all possible geometrical trans-
formations, then a particular transformation A = a will be
represented by a dot in this space. Total number of elements
in this space is defined by the cardinality |A |.

Figure 4: The space A of possible geometrical tranforma-
tions and its element A = a.

However, in practical data-hiding applications due to the
visual acceptability constraint, an intentional geometrical at-
tack space would not include all elements of A defined
above. Nevertheless, to be general, the set of e −typical geo-
metrical transformations [4], A

(J)
e (A), will be considered as

the space of possibly applied geometrical transformations,
with |A

(J)
e | < |A |. In the case when a ∈ R

J , the volume of
the set is referred to instead of cardinality.

If the parameters of a = (a1,a2, . . . ,aJ) are distributed

independently and identically according to p(a), then, |A (J)
e |

will be upper bounded as [4]:

|A
(J)

e | ≤ 2J(H(A)+e )
, (4)

where H(A) = − å p(a) log2 p(a) and the summation is per-
formed over the set of values that a can take.

4. ACHIEVABLE RATE OF DATA-HIDING IN
CHANNELS WITH GEOMETRICAL

TRANSFORMATIONS

Consider a theoretical communications set-up where the
length of data sequences goes to infinity, i.e. N → ¥ , and
the decoder neither has a geometrical synchronization frame-
work for recovery nor a priori knowledge about the applied
geometrical transformation. It is inevitable for this decoder
to regard all elements of A

(J)
e as a possibly applied one and,

thus, to perform an exhaustive decoding for each a ∈ A
(J)

e .
In the following Sections, achievability of reliable com-

munications in channels with geometrical transformations
is analyzed for the random coding and the random binning
strategies starting from a communications scenario without
any geometrical transformations. Reliability of the commu-
nications is measured by the probability of decoding error,
Pe, that is the probability that the decoded message M̂ is not

equal to the sent message M, i.e. Pr
[
M̂ 6= m|M = m

]
.



4.1 Communication set-ups based on random coding

In the case of random coding, the decoder will make a de-
coding error in following situations [4]:
• There is not any codeword W, which is jointly-typical

with V in the codebook determined by K: According
to the asymptotic equipartition property (AEP) [4], this
event is unlikely.

• Another codeword W′ from the codebook such that
(W′ 6= w|W = w) is jointly-typical with V: Accord-
ing to the AEP, any W′ from the K−defined codebook
and V constitutes a jointly typical pair with the probabil-
ity 2−N(I(W ;V |K)−e ), where e is an arbitrary small positive
number, i.e. e → 0. Since there are

(
2NRRC −1

)
differ-

ent W′ apart from W′ = w in a particular codebook, the
probability of decoding error in the random coding case,
PRC(N)

e , is upper bounded by:

PRC(N)
e ≤ 2NRRC 2−N(I(W ;V |K)−e )

, (5)

where RRC is the random coding-based communication
rate in channels without geometrical transformations. If
RRC satisfies the condition:

RRC ≤ I(W ;V |K)− e , (6)

then, PRC(N)
e → 0, as N → ¥ and e → 0.

Furthermore, when the decoding is performed at all ele-
ments of the space A

(J)
e , the upper bound in (5) becomes:

PRC(N)
e ≤ |A

(J)
e |2NRG

RC 2−N(I(W ;V |K)−e )
,

≤ 2N 1
N log2 |A

(J)
e |2NRG

RC 2−N(I(W ;V |K)−e )
,

≤ 2N( 1
N log2 |A

(J)
e |+RG

RC−(I(W ;V |K)−e ))
, (7)

where RG
RC is the random coding-based communication rate

in channels with geometrical transformations. Therefore, if
RG

RC satisfies the condition:

RG
RC ≤ I(W ;V |K)− e −

1
N

log2 |A
(J)

e |, (8)

PRC(N)
e → 0, as N → ¥ and e → 0. Moreover, taking (4) into

account, (8) can be rewritten in the following form:

RG
RC ≤ I(W ;V |K)− e −

J(H(A)+ e )

N
. (9)

As N → ¥ and e → 0, J(H(A)+e )
N term in (9) vanishes and the

upper bound on RG
RC reduces to:

RG
RC ≤ I(W ;V |K)− e , (10)

which coincides with (6) that bounds the rate in channels
without geometrical transformations. Consequently, in a the-
oretical set-up based on random coding scenario, the upper
bound on the rate of reliable communications is not affected
by applied geometrical transformations3.

3It should be noticed here that we did not assume memory effects in
the channel due to the intersymbol interference caused by the interpolation.
Obviously, RG

RC < RRC in this case.

4.2 Communication set-ups based on random binning

In the case of random binning, one encounters with a coding
error in following situations:
• There is not any codeword U in the codebook defined by

K at the encoder, which is jointly-typical with X: Ac-
cording to the AEP, any codeword U and X may form a
jointly-typical pair with the probability 2−N(I(U;X |K)−e ).
Since there are 2NR′

codewords U for any M in a partic-
ular codebook defined by K, the probability of this event
will be bounded by

PRB(N)
e ≤ (1−2−N(I(U;X |K)−e ))2NR′

,

≤ exp(−2N(R′−I(U;X |K)+e )), (11)

where we used the fact that (1 − x)n ≤ e−nx. If R′
>

I(U ;X |K)− e , PRB(N)
e → 0 as N → ¥ and e → 0.

• There is not any codeword U in the K−defined codebook,
which is jointly-typical with V: According to the AEP,
this event is unlikely.

• A codeword U from another bin M̂ such that(
M̂ 6= m|M = m

)
is jointly-typical with V: According to

the AEP, any codeword U from the codebook defined by
K and V may form a jointly-typical pair with the prob-
ability 2−N(I(U;V |K)−e ). Since there are

(
2NRRB −1

)
bins

in total with an index M̂ such that M̂ 6= m, the probability
of decoding error in the random binning case, PRB(N)

e , is
upper bounded by:

PRB(N)
e ≤ 2N[RRB+R′]2−N(I(U;V |K)−e )

, (12)

where R′ = I(U ;X |K)+ e and RRB is the random binning-
based communication rate in channels without geometri-
cal transformations. If the data-hider communicates with
the following condition on RRB:

RRB ≤ I(U ;V |K)− I(U ;X |K)−2e , (13)

then, PRB(N)
e → 0, as N → ¥ and e → 0.

When the decoder performs the decoding at all elements
of the space of typical geometrical transformations, PRB(N)

e
will be upper bounded by

PRB(N)
e ≤ |A

(J)
e |2N[RG

RB+R′]2−N(I(U;V |K)−e )
,

≤ 2N 1
N log2 |A

(J)
e |2N[RG

RB+I(U;X |K)+e ]2−N(I(U;V |K)−e )
,

≤ 2N( 1
N log2 |A

(J)
e |+RG

RB+I(U;X |K)+e −(I(U;V |K)−e ))
,(14)

where RG
RB is the random binning-based communication rate

in channels with geometrical transformations. If RG
RB is such

that:

RG
RB ≤ I(U ;V |K)− I(U ;X |K)−2e −

1
N

log2 |A
(J)

e |, (15)

PRB(N)
e → 0, as N → ¥ and e → 0. Furthermore, similar to

(9), 1
N log2 |A

(J)
e | term in (15) is eliminated as N → ¥ and

the upper bound for RG
RB becomes

RG
RB ≤ I(U ;V |K)− I(U ;X |K)−2e , (16)



which is equal to the condition on RRB given in (13) for chan-
nels without geometrical transformations. Thus, in theoret-
ical set-ups with random binning, the reliable communica-
tions do not suffer from geometrical transformations.

5. CONCLUSION

In this paper, it is demonstrated for theoretical set-ups,
where data lengths asymptotically approach infinity, using
an information-theoretic argument that reliable digital data-
hiding in channels with geometrical transformations is possi-
ble. Presented achievable rates for each case in channels with
and without geometrical transformations allow to conclude
that maximum rate of reliable communications is asymptoti-
cally the same.

A future extension of this work will be an information-
theoretic analysis for practical set-ups, in which the data
lengths are finite, to investigate the achievability of reliable
digital data-hiding in channels with geometrical transforma-
tions.
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