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ABSTRACT

In this paper, the optimization of Laguerre-Volterra filters (LVFs)
is carried out adaptively. Each kernel is expanded on an indepen-
dent Laguerre basis. An analytical solution to Laguerre poles opti-
mization is provided using the knowledge of the expansion coeffi-
cients, also called Fourier coefficients, associated with an arbitrary
Laguerre basis. These coefficients are estimated by means of the
Normalized Least Mean Squares (NLMS) algorithm. The proposed
method allows optimization of both the Fourier coefficients and the
Laguerre poles.

1. INTRODUCTION

Truncated Volterra series models have become very popular in
adaptive nonlinear filtering applications [1]. However the main
drawback of these filters is their over-parameterization. During
the last decade, the issue of Volterra model complexity reduction
has been addressed using various approaches. The expansion of
Volterra kernels on discrete orthonormal bases of functions (OBF)
is one of them [2, 3, 4]. The class of OBF generally used for mod-
elling purposes is that of rational orthonormal bases such as La-
guerre basis.

The Laguerre functions have the property to be completely charac-
terized by a single parameter, the Laguerre pole. When expanding a
Volterra kernel on a Laguerre basis, the parsimony of the expansion
is strongly linked to the choice of the Laguerre pole. Although ex-
pansion of Volterra kernels on Laguerre basis was firstly suggested
by Wiener in the 50’s [5], in the best of our knowledge Campello et
al.[3] were the first to derive an analytical solution to the Laguerre
pole optimization for Volterra models. They generalized the work
in [6] and also showed that using independent bases to expand each
kernel gives better results than the use of a single basis. However
the obtained analytical solution is based on the knowledge of the
Volterra kernels. Consequently a step of Volterra kernels estimation
is needed before the application of this solution. Note again that
this method is applicable if and only if the kernels satisfy the unit
delay condition.

In order to circumvent these limitations a new approach is proposed
in this paper. It is based on the knowledge of the estimated expan-
sion coefficients, also called Fourier coefficients associated with an
arbitrary Laguerre basis. The requirement of a unit delay is relaxed.
This approach can be viewed as a generalization of both [7] and [3].

The organization of the paper is as follows. In the next section,
the principle of Volterra model expansion on OBF is recalled and
the expression of the analytical optimal Laguerre pole is given for
each kernel. In section 3 this pole is expressed in terms of the La-
guerre spectrum, i.e. the set of Fourier coefficients relative to the
corresponding kernel. Then the adaptive identification method is
described in section 4 and illustrated by means of simulation results
in section 5 before concluding the paper in section 6.

2. BACKGROUND

A discrete-time P-th order Volterra filter is described by the follow-
ing input-output relation:

y(n) =
P

å
p=1

¥

å
n1=0

· · ·
¥

å
np=0

hp(n1, · · · ,np)
p

Õ
j=1

u(n−n j), (1)

where u, y and hp are respectively the input, the output and the p-th
order Volterra kernel. It has been shown that any causal non-linear
system, time invariant with fading memory, can be represented to an
arbitrary degree of accuracy by a finite expansion in Volterra series.
Considering the expansion of the kernel hp on an OBF,
Bp =

{

bk,p
}¥

k=0, yields:

hp(n1, · · · ,np) =
¥

å
k1=0

· · ·
¥

å
kp=0

gk1,··· ,kp bk1,p(n1) · · ·bkp,p(np), (2)

where the Fourier coefficients associated with hp are given by:

gk1,··· ,kp =
¥

å
n1=0

· · ·
¥

å
np=0

hp(n1, · · · ,np)bk1,p(n1) · · ·bkp,p(np). (3)

By denoting sk j ,p(n) =
¥
å

i=0
bk j ,p(i)u(n− i), the input-output relation

(1) can be rewritten as:

y(n) =
P

å
p=1

¥

å
k1=0

· · ·
¥

å
kp=0

gk1,··· ,kp

p

Õ
j=1

sk j ,p(n). (4)

The basis functions
{

bk,p(i)
}

used in this paper are discrete-time
Laguerre functions defined by their z-transforms as follows:

Bk,p(z) =
√

1− x 2
p

z
z− x p

(

1− x pz
z− x p

)k

. (5)

They are characterized by the parameter x p, called the Laguerre
pole, and have the two following properties [7]:

kbk,p(i) = −
(i+1)x p

1− x 2
p

bk,p(i+1)+
i(1+ x 2

p )+ x 2
p

1− x 2
p

bk,p(i)

−
ix p

1− x 2
p

bk,p(i−1), (6)

¶ bk,p(i)

¶ x p
=

1
1− x 2

p

(

(k +1)bk+1,p(i)− kbk−1,p(i)
)

. (7)

In order to optimize the Laguerre pole associated with the expansion
of the kernel hp, we define the following cost function:

Jp =
1

p
∥

∥hp
∥

∥

2
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where
∥

∥hp
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∥

2
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¥
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· · ·

¥
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np=0
h2

p(n1, · · · ,np). This cost function is an

upper bound of the modeling squared error due to the truncation to
a finite order of the Laguerre expansion [3]. By defining:

M1,l =
1
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∥hp
∥

∥

2
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¥
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np=0

nlh
2
p(n1, · · · ,np), l = 1, · · · , p, (9)
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1
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∥hp
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2

¥
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· · ·
¥
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nlhp(n1, · · · ,nl ,nl+1, · · · ,np)
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Q j,p =
1
p

p

å
l=1

M j,l , j = 1,2, (11)

the cost function (8) can be expressed explicitly in terms of the La-
guerre pole as follows:

Jp =

(

1+Q1,p
)

x 2
p −2Q2,px p +Q1,p

1− x 2
p

. (12)

This result follows the same steps of calculation as in [3]. It is
straightforward to show that the function Jp is a pseudo-convex
function inside the open convex set P = {x p ∈ ´ : |x p|< 1}. Then

any solution to ¶ Jp

¶ x p
= 0 is a global minimum of Jp [8]. This mini-

mum is reached for:

x p,opt =







r o,p −
√

r 2
0,p −1, i f r 0,p ≥ 1

r o,p +
√

r 2
0,p −1, i f r 0,p ≤−1

, (13)

where

r 0,p =
2Q1,p +1

2Q2,p
. (14)

Let us note that r 0,p is a characteristic of the system since it depends
only on Q j,p, j = 1,2, and therefore on the Volterra kernel hp.

3. OPTIMAL POLES EXPRESSIONS BASED ON THE
LAGUERRE SPECTRA

The optimal pole (13) is related to r o,p that depends on the Volterra
kernel hp, which means that it is necessary to carry out an estimation
of the kernel before determining the optimal pole. In this section,
an expression of r o,p depending on the Laguerre spectrum of the
p-th order kernel expanded on any Laguerre basis is investigated.
Such an expression will enable us to determine the optimal pole
directly from the p-th order estimated Laguerre spectrum without
calculating the Volterra kernel coefficients.
Similarly to definitions (9)-(11) associated with the Volterra kernel
coefficients, let us define the following quantities that depend on the
Laguerre spectrum of the p-th order kernel:

T1,l =
¥

å
k1=0

· · ·
¥

å
kp=0

(2kl +1)g2
k1,··· ,kp

, l = 1, · · · , p, (15)
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¥
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· · ·
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¥
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R j,p =
p

å
l=1

Tj,l , j = 1,2, (17)

Now, the objective is to express Q j,p, j = 1,2 as a function of R j,p.
First of all one can notice that the property (7) combined with for-
mula (3) yields [9]:

¶
¶ x p

gk1,··· ,kp =
1

1− x 2
p

p

å
l=1

(

(kl +1)gk1,··· ,kl−1,kl+1,kl+1··· ,kp

−klgk1,··· ,kl−1,kl−1,kl+1,··· ,kp

)

. (18)

Thanks to relation (18) and definitions (15)-(17), we get the follow-
ing lemma [9]:

Lemma 1 R1,p and R2,p are linked by means of their derivatives
with respect to x p as follows:

¶ R1,p

¶ x p
=

−2
1− x 2

p
R2,p,

¶ R2,p

¶ x p
=

−2
1− x 2

p
R1,p. (19)

The orthonormality of the Laguerre basis allows to get the following

relation:
∥
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∥

∥
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. Then, from the definitions

of R1,p and of Jp, a simple calculation yields
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∥
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∥

∥hp
∥

∥

2
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Thus
¶ R1,p

¶ x p
= 2p
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∥hp
∥

∥

2 ¶ Jp

¶ x p
. (21)

By using the relations (12) and (20), and the lemma 1, we get:

Lemma 2 The terms Q j,p associated with the Volterra kernel hp
and R j,p associated with the corresponding Laguerre spectrum are
linked by:

R1,p =
p
∥

∥hp
∥

∥

2

1− x 2
p

(

2
(

1+ x 2
p

)

Q1,p −4x pQ2,p +1+ x 2
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)

, (22)
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(
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p

)

Q2,p − x p

)

. (23)

By solving the system of equations (22) and (23), we get the ex-
pressions of Q j,p as a function of R j,p, j = 1,2. Then, by replacing
these expressions in (14), r o,p can be written as follows:

r o,p =

(

1+ x 2
p
)

R1,p +2x pR2,p

2x pR1,p +
(

1+ x 2
p
)

R2,p
. (24)

This result is summarized by the following theorem:

Theorem 1 The optimal pole of the Laguerre basis, associated with
the expansion of the Volterra kernel hp, is obtained from the La-
guerre spectrum, associated with the expansion of the same kernel
on an arbitrary Laguerre basis characterized by the pole x p, as fol-
lows:

x p,opt =







r o,p −
√

r 2
o,p −1, i f r o,p ≥ 1

r o,p +
√

r 2
0,p −1, i f r 0,p ≤−1

, (25)

where r 0,p is given by the formula (24).

This result is particularly meaningful. Equation (25) means that the
optimal Laguerre pole x p,opt is obtained from r o,p that can be re-
covered in using the Laguerre spectrum associated with an arbitrary
pole x p, as stated by formula (24) with equations (15)-(17) for the
calculation of R1,p and R2,p.



4. ADAPTIVE ESTIMATION METHOD FOR
LAGUERRE-VOLTERRA FILTERS

In practical case the expansion of the Volterra kernels on a Laguerre
basis is truncated to a finite order K. Consequently, for a given
Laguerre pole x p, the value of r 0,p calculated in using truncated
expressions of (15) and (16) is only an approximation of the actual
characteristic of the system. This approximation depends on the La-
guerre pole and on the Laguerre spectrum, via R1,p and R2,p. For a
fixed pole x p, the optimization of the Laguerre spectrum improves
the approximation of r o,p. It is then possible to determine the opti-
mal pole corresponding to the current approximation of r o,p. This
process is iterated until convergence.
Let us consider the LVF described as follows:

y(n) =
P

å
p=1

K−1

å
k1=0

· · ·
K−1

å
kp=0

gk1,··· ,kp

p

Õ
j=1

sk j ,p(n) = GT S(n),

where G =
(

GT
1 · · · GT

p · · · GT
P

)T
and S(n) =

(

ST
1 (n) · · · ST

p (n) · · · ST
P (n)

)T
, Gp containing the Fourier co-

efficients gk1,··· ,kp and Sp(n) the p-th order cross-products of the
sk,p(n) signals.
The proposed method can be viewed as a block-NLMS type
method. Its principle is to adapt Fourier coefficients until a given
convergence criterion be satisfied, then the Laguerre poles are esti-
mated, and the calculation is iterated with new data. Note that the
Fourier coefficients are adapted by means of the NLMS algorithm
(26) while the Laguerre poles are estimated in using (25).

G(n+1) = G(n)+
m

a+‖S(n)‖2

(

d(n)−GT (n)S(n)
)

S(n). (26)

a is a small positive constant, m is the step-size and d(n) is the
actual output of the system to be modeled. The estimation of a
new Laguerre pole occurs when the estimated Fourier coefficients
are nearly constant during a given time window of length NO. The
adaptive procedure is summarized as follows:

Parameters:
• K: truncation order.
• m : step-size (0 < m < 2).
• a: small positive constant.
• e p: convergence threshold.
• NO: window length.

Initialization:
• Set the vector G(0) equal to zero and n = 0.
• Set arbitrary initial values for x p, p = 1, · · · ,P and build

the associated Laguerre bases.
Computation:

1. Calculate the filtered inputs sk,p(n) associated with the La-
guerre filters Bk,p(z) defined by (5), organize the cross prod-
ucts of the filtered inputs into the vectors Sp(n) to generate
the vector S(n).

2. Estimate the Laguerre spectra in using (26).
3. For p = 1 · · · ,P :

• If
∥

∥Gp(n+1)−Gp(n)
∥

∥

2
< e p during the interval

[n+2−NO, n+1]:
(a) Calculate R1,p,n and R2,p,n in using truncated expres-

sions of (15)-(16).
(b) Evaluate r o,p,n in using (24).
(c) Determine new Laguerre poles according to (25).
(d) Build the associated Laguerre bases, increment n and

return to step 1.
• Else increment n and return to step 1.

5. SIMULATION RESULTS

To evaluate the performance of the proposed method, we present
simulation results obtained for two identification experiments. For
both experiments, the measurement noise was assumed to be a
white Gaussian process with zero mean and a variance such that the
Signal-to-Noise Ratio (SNR) be equal to 30 dB. All the simulation
results were obtained as ensemble averages over 50 independent
runs.
The identification of a second order Volterra system described be-
low was first considered.
First order kernel :

H1(z) =
z(z+0.5)

(z−0.3)(z−0.2)
.

Second order kernel :

h2(i, j) = 0.25h(i)h( j), h(i) = Z
−1

{

z(z+1)

(z−0.8)(z+0.8)

}

.

This system was simulated as a Volterra system with memory
M = 20. By taking the symmetry of the quadratic kernel into ac-
count, this filter has 230 parameters to estimate. The input signal
was white, Gaussian, centered with an unit variance. To validate
the theoretical analysis presented in the previous sections and to
evaluate the quality of the estimated Laguerre poles, an off-line cal-
culation of the cost functions J1 and J2 defined in (8) was done. By
plotting these functions, it appears that each function has a single
minimum respectively located at x 1,opt = 0.525 and x 2,opt = 0.733.
In order to fill the requirements of [3], a unit delay was incorporated
in the transfer functions defining the above system. The method of
[3] provided the following poles x 1,cam = 0.525 and x 2,cam = 0.734.
These values are similar to the optimal values x 1,opt and x 2,opt and
are to be compared with those provided by the proposed estimation
method.
The Laguerre poles was initialized to 0. The Volterra kernels expan-
sions on Laguerre bases were truncated to K = 7; thus the resulting
LVF has only 35 Fourier coefficients to estimate while the standard
Volterra filter has 230 parameters. The step-size of the NLMS al-
gorithm was chosen as m = 0.3. The convergence thresholds were
chosen equal to e p = 10−3, p = 1,2 and the window length was
NO = 50.
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Figure 1: Estimated Laguerre poles (Top ) and two estimated
Fourier coefficients (Bottom) corresponding to the linear (Left) and
quadratic (Right) kernels

From figure 1 one can conclude that the poles converge towards val-
ues close to the poles obtained with the Campello’s method and also
close to the optimal values x 1,opt and x 2,opt (dotted lines on Fig.1).
As previously stated the advantage of the proposed method is that



the a priori knowledge of the Volterra kernels is not needed, and
both Fourier coefficients and Laguerre poles are simultaneously es-
timated. However, one important question is that of the choice of
the convergence threshold e p and of the window length N0. When
the value of e p is chosen too small, a huge number of iterations
can be necessary for the convergence of a new estimated Laguerre
pole. Consequently, a particular care should be taken for selecting
these parameters. To illustrate the convergence of the overall iden-
tification procedure, the Mean Square Error (MSE) associated with
the proposed adaptive algorithm was compared with those obtained
when the Laguerre poles were arbitrarily chosen equal to 0.2 and
when the Laguerre poles were chosen equal to their optimal val-
ues x 1,opt and x 2,opt (Fig. 2). In steady-state, the performances of
the proposed algorithm are similar to those obtained with the LVF
the poles of which are optimal, but the convergence is slower. For
the LVF with arbitrary poles, to obtain a similar performance, the
truncation order had to be increased (K = 9).
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Figure 2: Comparison of four configurations of LVFs:(1)- poles op-
timized with the proposed adaptive algorithm, (2)- poles arbitrarily
fixed and K = 7, (3)- poles arbitrarily fixed and K = 9, (4)- poles
fixed at their optimal values

The second simulated system was a simplified model of a Power
Amplifier (PA) with memory that is an important device in radio
communication systems. A relatively simple baseband behavioral
model that accommodates memory as well as nonlinear behavior is
the Wiener model, i.e. a linear filter followed by a memoryless non-
linearity given by [10]: A(r) = 2r

1+r2 , A(r) and r being the output
and input signal amplitudes of the memoryless PA respectively. The
linear filter is a low-pass fourth-order Butterworth filter with a cut-
off frequency of 0.1 cycles/sample. We considered the transmission
of a 8-PAM signal through an AWGN (Additive White Gaussian
Noise) channel with SNR=30 dB. The PA with memory, to be iden-
tified, was modeled as a linear-cubic Volterra system. From Figure
3a we can conclude that the Laguerre poles respectively associated
with the linear and the cubic kernels converge to the same value.
This behavior was predictable since the dominant dynamics associ-
ated with the linear and the cubic kernels are the same for a Wiener
model. As for the first example, Figure 3b compares three config-
urations for representing the PA with memory: a LVF truncated at
K = 9 driven by the proposed method, a standard Volterra filter with
memory M = 16, and a LVF truncated at K = 10 with a pole arbi-
trarily chosen equal to 0.25. The truncation orders and the memory
were selected so that the steady-state performances are similar. For
the proposed method, the convergence thresholds were chosen such
as e p = 10−3, p = 1,3 and NO = 75. The parameters in each config-
uration were adapted by using the NLMS algorithm with a step-size
equal to 1.0. Both configurations gave comparable performances
but with a huge difference in terms of the parametric complexity.
By taking triangular representations of the kernels into account, the
LVF with optimized pole has 174 parameters whereas the LVF with
arbitrary poles and the Standard Volterra filter have respectively 230
and 832 parameters. Hence, a significant parametric complexity re-
duction is achieved with the optimized LVF while providing similar
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Figure 3: (a)- Laguerre poles estimated with the adaptive algorithm
(b)-Comparison of three configurations: (1)- LVF using the pro-
posed method, (2)- Standard Volterra filter, (3)- LVF with poles ar-
bitrarily fixed at 0.25.

performances in terms of MSE.

6. CONCLUSION

In this paper, an analytical solution to the optimization of Volterra
kernels expansions on Laguerre bases has been presented. This so-
lution has been expressed in terms of the estimated Laguerre spec-
trum associated with each Volterra kernel. Then an adaptive method
has been proposed to optimize both Laguerre spectra and Laguerre
poles. The performance of the proposed identification method have
been illustrated by means of simulation results that show the useful-
ness of the proposed method. In future works the authors intend to
investigate analytical solution to the optimization problem of others
OBFs for Volterra kernels expansions.
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