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ABSTRACT
In this paper we propose a multiuser scheduling algorithm
that has the maximum average system spectral efficiency,
but obtains a significant reduction in feedback load com-
pared to full feedback by using a feedback threshold. An
expression for the threshold value that minimizes the feed-
back load is found. Novel closed-form expressions are also
found for the system spectral efficiency when using M-ary
quadrature amplitude modulation. Finally, we analyze the
impact of scheduling delay and outdated channel estimates.

1. INTRODUCTION

The ever-increasing demand for new applications in wire-
less communication systems makes efficient transmission
scheduling between users a priority. The scheduling algo-
rithm that maximizes the average system spectral efficiency
among all time division multiplexing (TDM) based algo-
rithms, is the one where the user with the highest carrier-
to-noise ratio (CNR) is served at all times [6]. Here, we
refer to this algorithm as Maz CNR scheduling (MCS). One
drawback of this rate-optimal policy is that the scheduler
has to have full feedback from all users for every time-slot.
To reduce the feedback load, the Selective multiuser diversity
(SMUD) algorithm was introduced [3]. In that scenario, only
the users that have a CNR above a CNR threshold should
send feedback to the scheduler. If the scheduler does not re-
ceive feedback, a random user is chosen. Consequently, the
SMUD algorithm introduces a reduction in capacity and it
is not possible to set an optimal threshold value without de-
ciding an outage probability. The algorithm proposed in this
paper also employs a feedback threshold. However, if none of
the users succeed to exceed the CNR threshold, the scheduler
requests full feedback, and selects the user with the highest
CNR. Consequently, the best user is always selected, but the
feedback load is significantly reduced compared to the MCS
algorithm. We will refer to this scheduling technique as the
Optimal rate, reduced feedback (ORRF) algorithm.

2. SYSTEM MODEL

We consider a single base station that serves IV users using
TDM. Before performing scheduling, the base station is as-
sumed to receive perfect information about the users’ CNRs.
It is assumed that the channels of all users are i.i.d. slowly-
varying, flat Rayleigh fading channels with average received
CNR 7.

3. ANALYSIS OF THE FEEDBACK LOAD
For the ORRF scheme, the probability of full feedback is
given by inserting v = 7, into:

Py(v) = Py (7), 1)
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where Py(7) is the cumulative distribution function (CDF)
of the CNR for a single user. Differentiating (1), inserting
expressions for the Rayleigh distribution and using binomial
expansion we obtain the probability density function (PDF)
for the user with the highest CNR:

pre) = XS (N ‘1)<—1>“e—“+"””. @)

By using (1), the feedback load can be expressed as a
weighted sum of full feedback load and feedback for the
SMUD algorithm. If the load of full feedback is set to unity,
it can be shown that the normalized average feedback load
is given by:

FZl_P’Y(ryth)—*—P’iV(fyth% N:273747"" (3)

A plot of the feedback load as a function of 7 is shown in
Fig. 1 for 7= 15 dB.
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Figure 1: Normalized feedback load as a function of ¢, with
F=15 dB.

The expression for the threshold value that minimizes
the average feedback load can be found by differentiating
(38) with respect to ¢, and setting the result equal to zero.
For a Rayleigh fading channel, with CDF P, (y) = 1—e~ /7,
the optimum threshold is found to be:

N = —FIn(l — (1/N)N-T), N=2,34,---.  (4)



4. CONSTANT-POWER, VARIABLE-RATE
M-QAM SPECTRAL EFFICIENCIES

From [1] we know that the link spectral efficiency for
continuous-rate M-QAM can be approximated by

log, (M) = log, (1 + 237) (5)

where M is the constellation size and Ko = — In(5BERy).
Taking the expectation of the expression in (5), using in-
tegration by parts, L’Héspital’s rule, and [5, (3.352.2)], we
obtain the following mazimum average system spectral effi-
ciency (MASSE):
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where acr denotes adaptive continuous rate M-QAM. The
MASSE [Bit/Sec/Hz] is defined as the maximum average
sum of spectral efficiency within a cell, shared between all
users’ up-links and down-links.

For physical systems we use adaptive discrete rate (ADR)
M-QAM where the CNR range is divided into K + 1 fading
regions, with constellation size My = 2* assigned to the kth
fading region. The MASSE is now given by [1]:

Z kpr, (7)

where py, is the probability that the CNR falls into region k.
For a Rayleigh channel, this probability is given by
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5. CONTINUOUS-POWER, VARIABLE-RATE
M-QAM SPECTRAL EFFICIENCIES

Inserting (2) into [4, (25)], the following closed-form expres-
sion for the MASSE using adaptive continuous power and
rate M-QAM is obtained:

< R>acrpa 1% N-1) (1" (L n)yx
W " In2 o n T+n * 5 ’
9)
where vk = Y0/K1 = —v0(2/3) In(56BERy) is the optimal
cut-off CNR level below which data transmission is sus-

pended. Correspondingly, inserting (2) into [4, (22)], the
closed-form expression for the power constraint yields:
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For the discrete rate scenario, the CNR range is also here
divided into K + 1 bins. However now the system transmits
the constellation size My when vy My4+1 > v > 5 My, where
75 is found by optimizing the MASSE with regard to the
power constraint in [4, (32)]. The expression for the MASSE
in the rate-discrete case, is given by (7), and the following
expression for py is obtained:

(10)
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Inserting (2) into [4, (32)], the following closed-form expres-
sion for the power constraint for ADR M-QAM is obtained:
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Figure 2: Maximum average system spectral efficiency for
ORRF scheduling with =15 dB, 7 fading regions and
BER, = 1072

Fig. 2 shows how the MASSE varies with the number of
users for different power and rate adaptation policies. We
see that for discrete-rate M-QAM, the gain due to power
adaptation of about 0.5 Bit/Sec/Hz is independent of the
number of users.

6. M-QAM BIT-ERROR-RATES

The BER of coherent M-QAM with two-dimensional Gray
coding over an additive white Gaussian noise (AWGN) chan-
nel can be approximated by [4]:

~ 3y
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This equation is the inverse of (5). Consequently, it
can be easily shown that the constant-power ACR M-QAM
scheme always operates at the target BER. Because the dis-
crete assignment of constellation sizes in ADR M-QAM, this
scheme has to operate at a BER lower than the target. The
average BER for ADR M-QAM using constant power can be
calculated as [1]:

L
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Inserting (13) into (15) we obtain the following expression
for the average BER within a fading region:
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where ay,,, is given by:
1+n 3
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By applying the power adaptation policy given by [4, (22)]
it can be shown that the M-QAM schemes using continuous
power adaptation always operates at the target BER.

7. CONSEQUENCES OF DELAY

In the previous sections, it has been assumed that there is
no delay from the instant where the channel estimates are
obtained and fed back to the scheduler, to the time when
the optimal user is transmitting. For real-life systems, we
have to take delay into consideration. We have analyzed
two delay scenarios. In the first scenario a scheduling delay
arises because the scheduler receives channel estimates, takes
a scheduling decision and notifies the selected user, who does
not necessarily have to be the best user anymore. The sec-
ond scenario deals with outdated channel estimates, which
leads to both a scheduling delay and suboptimal modulation
constellations with increased BERs.

7.1 Impact of Scheduling Delay

In this subsection we will assume that the scheduling decision
is based on a channel estimate at time ¢, whereas the data
are sent over the channel at time ¢t + 7. We will assume that
the transmitter uses a perfect channel estimate available at
time ¢t + 7, to determine the transmission rate.

To investigate the influence of scheduling delay, we want
to develop a PDF for the CNR at time ¢ + 7. Let o and
a; be the channel gains at time ¢ and t 4 7, respectively.
Assuming that the average power gain remains constant over
the time delay 7 for a slowly-varying Rayleigh channel, (i.e.
Q = E[a®] = E[a?2]), and using the same approach as in [1] it
can be shown that the conditional PDF p,_|q(ar|c) is given
by:

(a2 +pa?)
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where p is the correlation factor between o and «a, and
Io(-) is the zeroth-order modified Bessel function of the first
kind [5]. Assuming Jakes Doppler spectrum, the correlation
coefficient can be expressed as p = JZ(2nfp7), where Jo(*)
is the zeroth-order Bessel function of the first kind and fp
[Hz] is the maximum Doppler frequency shift [1]. Recogniz-
ing that (18) is similar to [2, Eq. (A-4)], gives the following
PDF at time ¢t + 7 for the ORRF algorithm expressed in
terms of v; and 7 [2, Eq. (5)]:
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Pl = 3 (nﬁ1><—1>"

Note that for 7 = 0 (p = 1) this expression reduces to (2), as
expected. When 7 approaches infinity (p = 0) (19) reduces
to the Rayleigh PDF for one user. This is logical since for
large 7s, the scheduler will not have useful feedback infor-
mation, and will select users independent of their CNRs.
Inserting (19) into [4, Eq. (8)], using binomial expansion,
integration by parts, L’Hospital’s rule and [5, Eq. (3.352.2)],

it can be shown that we get the following expression for the
MASSE after a delay 7:

1
C N-1 N F(1—p 2+
< V>Vom — ﬁano (n+1)(71)n67(1 Pt

<8 (s ) (20)

Using a similar derivation as for the expression above it
can be shown that we get the following expression for the
delayed MASSE using optimal power and rate adaptation:
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with the following power constraint:
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Figure 3: Average degradation in MASSE due to scheduling
delay for ORRF using optimal power and rate adaptation
and optimal rate adaptation.

From Fig. 3 we see that independent of the number of
users and adaptation policy, the system will be able to oper-
ate satisfactory if the normalized delay is below the critical
value of 2-10™“. For normalized time delays above this value,
we see that the MASSE converges towards the MASSE for
one user.

7.2 Impact of Outdated Channel Estimates

We will now assume that the transmitter does not have a per-
fect channel estimate available at time ¢ 4+ 7. Consequently,
both the selection of a user and the decision of the constel-
lation size is done at time ¢t. This means that the chan-
nel estimates are outdated the same amount of time as the
scheduling delay. The constellation size is thus not depen-
dent on -, and the time delay in this case does not affect
the MASSE. However, now the BER will suffer from degra-
dation because of the delay and in [1] it is shown that the



average BER, conditioned on 7 is

K
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The average BER can be found by using the following equa-
tion:

BER(7) =

< BER >goe / BER(7)py- (7) d7. (24)
[0}

For discrete rate adaptation with constant power, the BER
can be expressed by (14), replacing BERy, with BER;, where:

BER,,
=[5 5 BER(Me, ¥7 )Py, 4 (72 17) dyeps = () dy- (25)

Inserting (13) and (18) expressed in terms of v, and + into
(25), we obtain the following expression for the average BER
within a fading region:
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where ¢, is given by
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Note that for zero delay (p = 1) ¢k,n = di,n = G, n, and (26)
reduces to (16), as expected.

Because we are interested in the average BER only for
the CNRs for which we have transmission, the average BER
for continuous-power, continuous-rate M-QAM is

o BER(Y)py= () dy
[ pre () dy

Correspondingly, the average BER for the continuous-power,
discrete-rate M-QAM case is given by:
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Fig. 4 shows that the average system BER is satisfactory
as long as the normalized time delay again is below the crit-
ical value 102 for the adaptation schemes using continuous
power and/or continuous rate.

8. CONCLUSION

We have analyzed a scheduling algorithm that has optimal
spectral efficiency, but reduced feedback compared with full
feedback load. We obtained closed-form expressions for the
optimal CNR threshold used in this algorithm. Novel closed-
form expressions have also been found for the system spectral
efficiency when using M-ary quadrature amplitude modu-
lation. Both the impact of scheduling delay and outdated
channel estimates have been analyzed.
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Figure 4: Average BER degradation due to time delay for
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