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ABSTRACT

We extend a method described by Sintes/Schultz (1998) for the
removal of coherent signals in stationary broadband noise to the
case of non-stationary broadband noise by applying time-frequency
methods. The new method is applied to the removal of cardiopul-
monary resuscitation (CPR) artifacts in the ECG of domestic pig
suffering from ventricular fibrillation (VF). The excellent filtering
properties and the possibility of real-time signal processing might
have applications in emergency medical settings.

1. INTRODUCTION

Ventricular fibrillation (VF) claims more than 450000 lives per year
in the United States [14]. Any attempt to improve resuscitation
success is therefore highly welcome. Improvements may, for ex-
ample, rely on more effective defibrillation waveforms, improved
medication, or on a more appropriate timing of cardiopulmonary
resuscitation (CPR) and defibrillation shock. ECG-based prediction
of defibrillation success [10, 9, 6, 2, 3, 4] may improve timing of
CPR and defibrillation shock and therefore avoid myocardial injury
and give a performance feedback during cardiopulmonary resuscita-
tion (CPR). It requires algorithms to analyze ventricular fibrillation
(VF) signals, to remove artefacts and to classify patterns of param-
eters. To date, no entirely satisfactory methods have been found to
cope with CPR artifacts. These artefacts are characterized by large
spikes in the time domain of the signal, and by a tonal structure
in the frequency domain. The present contribution is an attempt to
develop such algorithms for CPR-artefact removal, based on one
ECG-channel only. Presently, external manual resuscitation has to
be stopped for ECG-analysis, which leads quickly to a deteriora-
tion of the patients’ status. Developing and improving algorithms
of CPR-artefact removal could therefore have an important impact
on emergency medical protocols. In particular, CPR could be per-
formed in parallel with analysis of ECG, leading to better resusci-
tation results. In this contribution, we adapt a technique, which has
originally been developed for the analysis of data obtained from
gravitational wave interferometers, to ECG analysis. Technically,
this means an adaption of the original method to the time-variant
case by means of STFT-methods. We demonstrate the effect of
our method on a VF-dataset from an animal model. More detailed
investigations on human VF-ECG are in preparation. Technically
speaking we have to address the problem of removal of the coherent
signal content from the broadband signal part, both being allowed
to behave in a non-stationary way. In [12] the coherent signal part
is described as

y(t) = ∑N
k=1

(
αkm(t)k +αkm(t)k

)
(1)

This work was partially supported by the OeNB Proj.9942

(the overbar denotes complex conjugation), where m(t) is a nearly
monochromatic signal (the interference):

m(t) = r (t)e2πi f0(t)t ,

r(t) and f0(t)are assumed to be slowly varying. An estimate for
f0(t) and an upper bound for the number of components N are as-
sumed to be known. The αk are complex constants. The signal is
modelled as s0 (t) = y0 (t)+n0 (t), where n0 is the broadband com-
ponent. The problem consists in estimating αk and m(t). A possi-
ble approach is described in [12] under stationarity assumptions on
n0(t); our localized version will be explained in the next section.

Our model generalizes the coherent signal part to allow for
piecewise constant coefficients αk(t) by using TF-techniques. In
particular we obtain the following improvements compared to the
original algorithm:
• The approach in [12] is localized, allowing for more general

signals to be represented and enabling online computation (an
important aspect for the medical applications we have in mind).

• Robustness is added by regularization. This is particulary im-
portant in the case of vanishing (or very small) coherent signal
components, where the original algorithm tends to produce arti-
facts due to instability.

These features allow for a medical application: the real-time re-
moval of artifacts of cardiopulmonary resuscitation (CPR) in ECGs
of Ventricular Fibrillation (VF) (see Fig.1 for an example). This is
of great value in emergency medicine, allowing for shorter “hands-
off” times (where no medical treatment is possible), so decreasing
mortality.

2. OUTLINE OF THE ALGORITHM

2.1 Preliminaries

A basic tool in our analysis is the Short-Time Fourier Transform
(STFT) of a signal f with respect g, given as:

Vg f (t,ω) =
∫

R
f (τ)g(τ − t)e−2πiωτ dτ =

= F ( f ·Tt ḡ)(ω)
= 〈 f ,MwTtg〉 .

(2)

The window function g is usually non-negative and symmetric
around zero, e.g. a Gaussian. F denotes the Fourier Transform,
Tx is the translation operator: Tx f (t) = f (t− x), and Mω the modu-
lation operator (frequency shift): Mω f (t) = e2πiωt f (t). The STFT
is a linear operator; for basic properties see [7] or [5]. If g is nor-
malized it is isometric with respect to the energy norm. As we will
work in the discrete time setting (i.e. signals are assumed to be ele-
ments of a Rd) the operators defined above have to be dicretized as
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Figure 1: Example of Local CLR alg. applied to a VF ECG: Displayed are log-spectrograms of the signal (i.e. color-coded logarithm of squared STFT)
(a), the estimated coherent part (b), and the estimated broadband component (c). Sampl. freq. 200 Hz, a Gaussian window, window-length 2048, σ = 512,
∆T = 512 (all in samples). VF is induced after 33s, CPR starts at t = 276s. Estimation of coherent part (b) uses same windows, 6 freq. bins around multiples
of f0 (assumed to lie between 1.1 - 1.5 Hz 4 overtones for analysis and 20 overtones for synthesis.

well. In particular, the DFT will play the part of the Fourier Trans-
form. Typically, the length of the DFT can be chosen to be equal to
the window-length, that is L = |suppg|. We will use time sampled
STFT values only:

V ∆T
g (k,ω) = Vg f (k∆T,ω) ,

where ∆T is a fraction of the window length (in applications we will
typically choose ∆T = L/4 or L/2) and ω are the Fourier frequen-
cies k

/
L, k = 0,1, . . . ,L−1.

Under these conditions (in fact under much more general ones,
see [7]) and with mild conditions on g (positivity is sufficient, to-
gether with sufficient overlap between its shifted copies in combina-
tion with sufficiently dense sampling on the Fourier transform side)
inversion of the STFT is possible on its range: See [11] for these
and related properties of the discrete STFT.

2.2 Estimation of the interference

Our approach consists in applying the Coherent Line Removal
(CLR) algorithm described in [12] to the “time slices” Vgs0 (t, )
of the given signal, and then to “glue” the local estimates together
by means of the ISTFT. In the following we give a short summary
of the CLR method: An estimation of m(t) is constructed by “cut-
ting off” the harmonics of the interference in the TF domain, for
each of the harmonics an estimate of m(t) is calculated; a prelimi-
nary version of m(t) is obtained as weighted sum of these estimates,
where the weights are determined by the strength of the “back-
ground noise”.

As we work on single “time slices” for the most part of the
estimation procedure, we set the time parameter to zero, so we will
do our estimations on

ŝ = ĝ · s0 = ĝ · y0 + ĝ ·n0 = ŷ+ n̂

To “cut off” the spectral content of the signal at multiples of the
fundamental frequency f0, we use a set of smooth localizers with

disjoint supports, i.e. positive functions (e.g. smooth plateau func-
tions) with

∑ f hk ( f ) = 1, hk ≥ 0

0 ∈ supp(hk)

supp(hk)∩ supp
(
Tf0 hk+1

)
= /0

where the support of the localizers covers the “essential support”
of ŷ; moreover the value of the localizers should be approximately
constant on this set.
This produces a set of functions

s̃k = ŝg ·Tk f0 hk = ỹk + ñk, 1 ≤ k ≤ N,

We obtain sk = yk + nk by inverse Fourier transformation. With
good approximation (by the conditions posed on the localizers)

sk = F−1s̃k ≈ αkmk +
(

Mk f0F
−1hk

)
∗n

= yk +nk,

where both yk,nk are narrowband functions with frequency support
around k f0.
Consequently, the complex valued roots 1 Bk, defined as

Bk (t) = s1/k
k (t) = α

1/k
k m(t)βk (t) , (3a)

βk (t) =

[
1+

nk (t)

αkm(t)k

]1/k

. (3b)

all have effective frequency supports around f0 and will be used to
estimate the interference m(t). Eq.(3b) has to be interpreted with
caution, because its denominator can be zero, if there is no inter-
ference present at time t, or if αk is (nearly) zero: In this case sk

1some care has to be taken using the correct branch of the root, so that
no “jumps” occur in argBk
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consists of the broadband component only. We read (3b) in a regu-
larized sense: In case the quotient gets “too big” the corresponing
value of Bk(t) should have little influence on the estimation of the
interference; so the estimates of m(t) obtained from the Bk will be
weighted according to the magnitude of βk, giving less weight for
large βk(t). See subsec.2.3 for a discussion.
The functions nk can be interpreted as realizations of stochastic
processes, so the Bk are stochastic functions as well. As the en-
semble average 〈nk (t)〉 is zero at any time instant t, we obtain
〈Bk (t)〉 = α

1/k
k m(t). These functions are multiples of each other.

The problem to multiply all of these functions with factors Γk, so
that they are “most alike” is solved in [12] by introducing yet an-
other set of functions bk = ΓkBk, with 〈bk (t)〉 = a · g(t)m(t), and
to estimate the values of the Γk by comparing to the first (or, more
generally, any other fixed) harmonic:

Γk := argmin‖Bk−ΓkB1‖2 , k = 1,2, . . .

what leads to
Γk = 〈B1,Bk〉

/
‖Bk‖2

In principle the subsequent variant of deriving the weights Γk should
be applicable in more general situations, because it does not favour
one specific Bk (here B1): one solves the following minimization
problem:

min∑16k<l6N ‖ΓkBk−ΓlBl‖2
2 s.t.‖Γ‖2 = 1

which determines Γ as the eigenvector to the smallest eigenvalue of
a certain matrix. This will be carried out in subsequent work. On
the other hand, the choice of a fixed reference signal as proposed
appears to improve stability.
The interference m(t) is constructed as a function in the linear span
of the bk with the same mean and minimum variance V (m(t)):

m(t) =
N

∑
k=1

ξk (t)bk (t),
N

∑
k=1

ξk = 1

V (m(t)) =
N

∑
k=1

ξ
2
k V (bk(t)) =

N

∑
k=1

ξ
2
k

∣∣∣Γ2
k

∣∣∣V (Bk(t))→ min!.

This leads to 2

ξk =
V (βk (t))−1

∑N
l=1 V (βl (t))

−1 . (4)

An estimation of the variance can be obtained by a Taylor expansion
of the root in Eq.(3b) to the first order:

βk (t)≈ 1+
nk (t)

kαkm(t)k (5)

Obviously this approximation overestimates the magnitude of βk,
so the expression for the variance resulting from (5),

V (βk (t)) =

〈
|nk (t)|2

〉
k2

∣∣∣akm(t)k
∣∣∣2 (6)

(the brackets denoting ensemble averages) is an overestimation ei-
ther, resulting in less weight ξk for the corresponding function bk in
the estimation of m(t) (Eq.(4)), making the approximative estima-
tion stable against noise. - In the denominator of (6) akm(t)k can
be approximated by sk (t), giving

V (βk (t))≈
〈
|nk (t)|2

〉
k−2 |sk (t)|−2 (7)

2In [12] the expression for the variance in (4) does not to contain the
factor Γk , obviously due to a typo or implicit normalization assumption.

For a stationary broadband component nk(t) the ensemble average〈
|nk (t)|2

〉
is equal to the power spectral density of nk, which can be

estimated by calculating the PSD of s in a neighbourhood of supp ŝk
not containing supp ŝk . This completes the estimation of m(t).
The coefficients αk are calculated by projection:

αk =
〈

s,mk
〉/∥∥∥mk

∥∥∥2
(8)

This gives y(t) as in Eq.(1). - We should state that it can make
sense to use more overtones (a larger value of N in Eq. (4)) for
reconstruction than for analysis. Similarily, the CLR algorithm will
work if only a subset of the harmonics is used for estimation.

2.3 Regularization

The estimation procedure as described above is not stable in the
cases of

(a) vanishing broadband component nk(t),
(b) vanishing interference m(t),
In the “no-noise” case the variance of one or more βk is zero, giving
weight one (in the case of one vanishing βk) to the corresponding
function-value ck(t) and zero to all the others. As the estimation
of the power spectral density (inherently, and by the stationarity as-
sumption implicitely contained in its usage as noise estimate) tends
to give only rough estimtes of the real noise component the corre-
sponding weigths can be too big in the low-noise case. A regular-
ized expression for the variance is given by

Vε (βk (t)) =

〈
|nk (t)|2

〉
+ ε |sk (t)|2

k2 |sk (t)|2

In fact, in our experiences the CRL algorithm is rather robust with
that kind of regularization: Even the limit for ε → ∞, leading
effectively to fixed variances V (βk (t)) ∼ k−2 gives acceptable
results in many cases.

The case of vanishing m(t) is more subtle: Two cases have to
be distinguished:

(b1) There is no interference present, while the estimated interfer-
ence m(t) is non-zero (the case of non-vanishing noise)

(b2) The estimated intererence is (approximately) zero (the low-
noise case)

Case (b1) happens if some broadband components are large com-
pared to the coherent component. The approximation in the expres-
sion for the variance in (7): sk ≈ αkmk, not being valid in this case,
as

∣∣αkm(t)k
∣∣ 6� nk(t), will assign an arbitrary number to the esti-

mated variances, resulting most probably in a non-zero, but finite,
estimate of m(t). The components akmk(t) will be of the order of
magnitude of the broadband signal. So this case cannot be detected
by the CLR algorithm in general. Actually this is a problem of the
f0 estimation procedure and related to problems of spectral peak
detection in high noise. Here statistical tests for the reliability of
a detected spectral peak can be done [13]. In the medical applica-
tion this case corresponds to no CPR + VF with dominant frequency
around f0 (a number that is typically lower than 1.5 Hz). - The ex-
perimental data we have got for this case shows that at least some of
the broadband component at this frequency remains, so that correct
classification is possible.
Case (b2) corresponds to weak broadband, weak interference sig-
nals. Here regularization methods can be applied succesfully: In
the exact representation of the variance and in the approximation
(6) all variance terms diverge, leading to indefinite values for the
weigths in Eq.(4). Moreover, the magnitudes of the coefficients αk
in Eq.(8) tend to infinity for all indices k. This could result in a
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large value for |y(t)|, contrary to the real situation m(t) ≈ 0. - A
regularized estimation of the coefficients,

∥∥∥α
(δ )
k

∥∥∥ =

〈
s,mk

〉∥∥mk
∥∥2 +δ

leads to the asymptotic behavior

∥∥∥α
(δ )
k mk

∥∥∥ 6
‖sk‖

1+δ

/∥∥mk
∥∥2

≈
∥∥mk

∥∥2 ‖nk‖
δ

for mk small. On the other hand, this regularization leaves an coher-
ent signal part of the order

|αkδ |∥∥mk
∥∥2 |mk (t)|

on the broadband signal for big values of mk. So there is a data-
dependent “trade-off” for the optimal value of δ .

2.4 Global reconstruction of the coherent signal part

The locally estimated values of y(t) can now be “glued” together
to give a global estimate in a way that avoids discontinuites on the
ends of the estimation intervals. This can be done by standard STFT
inversion procedures; an overlap-add (OLA)([1]) algorithm will al-
low for online processing. Inverse STFT can be realized as

IST FT (u)(t) =

(
V ∆T

g
)∗

u

∑k∈Z |g(t−∆T k)|2

(the star denotes the adjoint operator).

3. PRACTICAL REALIZATION

We have worked out a MATLAB implementation of the discribed
algorithm adapted to the case of CPR removal in VF-ECGs. This
means we have some knowledge about the fundamental CPR fre-
quency f0, which is assumed to vary between 1 and 1.5 Hz (what is
actually true). Estimation of the fundamental frequency is based on
the calculating the “Harmonic spectrogram” [8]

Wgs(t,ω) = ∑n
k=1

∣∣Vgs
∣∣2 (t,kω)

and finding the maximum of this function in the chosen frequency
band for every time slice. No search for the actual existence of har-
monics is performed, neither is the existence of spectral lines tested.
(There are many algorithms for f0 estimation; we chose a simple al-
gorithm based on the STFT for computational purposes.)
Using standard equipment (800 MHz Processor) and MATLAB, the
algorithm needs about 1/5 of the time span of the ECG experiment
to calculate the results. As OLA-algorithms can be easily adapted
to online processing the limiting factor for real time processing is
the length of the analysis window g (approx. 10s in the example of
Fig.1) and the time-step ∆T (approx. 2.5s). This seems to be “com-
patible” to practical use (Automated external defibrillators typically
need a measurement time of about 10s.)

4. AN EXAMPLE

We will illustrate the foregoing statements by the means of an exam-
ple: We use data from a VF ECG, the corresponding spectrograms
are displayed in Fig.1, see there for the technical data. In subfig.(a)
the original data is displayed. Fibrillation (VF) starts at t0 = 33s
(before that time the overtones of normal heart rhythm are visible at
multiples of 5/3 Hz), the VF “band” starting at approx. 10 Hz. At
t = 276s CPR starts, producing spectral lines with “overtones” in

the spectrogram. (The visible constancy of f0 is a part of the exper-
iment, which is not exploited in the estimation procedure and which
has no influence on the results. Important is the harmonic relation
of the overtones.) These lines finally overlap with the VF spectral
part after t ≈ 700s. After t ≈ 850s there is no VF content visible, the
spectrogram is dominated by CPR artifacts. Many of these artefacts
seem to be removed in subfig.(c).
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Inc., Boston, MA, 2001.

[8] J. McNames, C. Crespo, M. Aboy, J. Bassale, L. Jenkins, and
B. Goldstein. Harmonic spectrogram for the analysis of semi-
periodic physiologic signals. In Proceedings of the Second
Joint EMBS/BMES Conference 2002, pages 143–144, Hous-
ton, TX,, 23-26 Oct., 2002.

[9] M. Noc, M.H. Weil, S. Sun W. Tang, A. Pernat, and J. Bis-
era. Electrocardiographic prediction of the success of cardiac
resuscitation. Crit Care Med, 27(4):708–714, 1999.

[10] H.P. Povoas and J. Bisera. Electrocardiographic waveform
analysis for predicting the success of defibrillation. Crit Care
Med, 28(11 Suppl):N210–1, 2000.

[11] S. Qian and D. Chen. Joint Time-Frequency Analysis: Method
and Application. Prentice Hall, Englewood Cliffs, NJ, 1996.

[12] Alicia M. Sintes and Bernard F. Schutz. Coherent line re-
moval: Filtering out harmonically related line interference
from experimental data, with application to gravitational wave
detectors. Phys. Rev. D, 58:122003, 1998.

[13] J. Timmer, M. Lauk, and C.H. Lücking. Confidence regions
for spectral peak frequencies. Biometrical J., 39:849–861,
1997.

[14] Z.J. Zheng, J.B. Croft, W.H. Giles, and G.A. Mensah. Sudden
cardiac death in the united states, 1989 to 1998. Circulation,
104 (18):2158–63, 2001.

2206


	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Hans G. Feichtinger
	Anton Amann
	Andreas Klotz



