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ABSTRACT

Oversampled filter banks have been considered for channel
coding, because they introduce redundancy into the subband
representation of signals and permit more freedom in their
design than critically sampled structures. In this paper,
based on the knowledge of the channel noise’s covariance
matrix, we propose a constrained design for the synthesis fil-
ter bank in order to minimise the noise power in the decoded
signal, subject to admitting perfect reconstruction. For the
special case of paraunitary filter banks, a suboptimal itera-
tive design is presented, which highlights the potential ben-
efits of this approach, as demonstrated by a design example.

1. INTRODUCTION

The redundancy and design freedom afforded by oversam-
pled filter banks (OSFBs) has in the past been exploited for
robustness towards quantisation of subband signals [1, 2, 3],
reconstruction of erased or erroneous subband samples [4],
or for the design of error correction codecs [5, 6]. In the ini-
tial days of OSFBs, the general redundancy in the subband
domain was used to attain a robust data representation [1].
In [3], the filter bank characteristics are specifically geared
towards the spectral shaping of the quantisation noise in the
subband domain. More recently, for a given analysis filter
bank, in [5] the design freedom in selecting a synthesis fil-
ter bank is utilised by projecting away from the noise space,
which is assumed to have a reduced rank.

This paper analyses the application of OSFBs as poten-
tial channel coders. Based on a brief description of filter
banks in Sec. 2, the channel coding structure is presented in
Sec. 3. With the aim of minimising the impact of additive
channel noise on the decoded signal, we derive a noise power
term similar to [3], which can be utilised as a cost function
for the channel coder design. We propose a constrained opti-
misation scheme for the synthesis filter bank in Sec. 4, which
aims to minimise the channel noise power at the decoder out-
put subject to the filter bank being perfectly reconstructing.
The appeal of such a channel coder design is motivated by
results obtained by a suboptimal approach, which is demon-
strated by an example in Sec. 5. The approach is discussed
in Sec. 6 and conclusions are drawn in Sec. 7.
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Figure 1: Subband decomposition of a signal X(z).

2. FILTER BANKS

Based on the description of basic filter bank structures in
Sec. 2.1, a transmission model is discussed in Sec. 3 with
respect to coding, which will enable us to later formulate a
design criterion.

2.1 Oversampled Filter Banks

Fig. 1 shows a general filter bank structure comprising an
analysis and a synthesis stage. The analysis filter bank splits
a fullband signal X(z) into K frequency bands by a series of
bandpass filters Hk(z) , k = 0(1)K − 1, and decimates by a
factorN ≤ K, resulting in so-called “subband” signals Yk(z).
The dual operation of reconstructing a fullband signal from
the K subband signals is accomplished by a synthesis filter
bank, where upsampling by N is followed by interpolation
filters Gk(z), k = 0(1)K − 1.

The purpose of oversampling by a ratio K/N > 1 rather
than a critical decimation by K has application specific rea-
sons. Classically, filter banks comprise of a series of bandpass
filters. Non-critical decimation of the resulting subbands
will permit the benefit of lower computational complexity
while avoiding aliasing in the subbands, which would other-
wise limit the performance of, for example, adaptive filters
operating independently on the various subband signals [7].
When processing the subband signals Yk(z) in Fig. 1 inde-
pendently, the information that is located in the overlap re-
gions of adjacent bandpass filters has to be made fully avail-
able to the at least two subbands sharing this spectral re-
gion. Unless overlap regions are avoided by permitting band
gaps in the overall transfer function of Fig. 1, it is therefore
intuitively clear that oversampling is required, and the re-
dundancy must be placed at frequencies where the analysis
filters spectrally overlap.

The redundancy afforded by OSFBs has more recently
attracted attention for channel coding [5, 6]. There, a coding
rate N/K < 1 can ensure robustness against noise interfer-
ence, with the aim of restoring noise corrupted samples due
to the redundant format in which the data is transmitted.
The analysis and synthesis filter banks function as encoder
and decoder, while the filters Hk(z) and Gk(z) are no longer
limited to a bandpass design, but will rather be selected ac-
cording to the characteristics of the interfering noise.

2.2 Polyphase Matrices

For implementation and analysis purposes, OSFBs as shown
in Fig. 1 are conveniently represented by polyphase analysis
and synthesis matrices. The former is based on a polyphase
expansion of the analysis filters Hk(z)

Hk(z) =

N−1∑
n=0

z−nHk,n(zN ) , (1)
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Figure 2: Analysis filter bank with demultiplexer and H(z)
describing an N ×K convolutive MIMO system.

with polyphase components Hk,n(z), and a similar decom-
position of the input signal X(z)

X(z) =

N−1∑
n=0

z−N+n−1Xn(zN ) . (2)

with polyphase components Xn(z). This allows to denote
the subband signals as Y0(z)

...
YK−1(z)

 =

 H0,0(z) . . . H0,N−1(z)
...

. . .
...

HK−1,0(z). . .HK−1,N−1(z)


︸ ︷︷ ︸

H(z)

 X0(z)
...

XN−1(z)

 (3)

where the polyphase analysis matrix H(z) ∈ CK×N (z) en-
ables to structure the analysis filter bank as given in Fig. 2.

Analogously, a polyphase synthesis matrix G(z) ∈
C
N×K(z) can be defined based on a polyphase expansion

of Gk(z), yielding the flow graph shown in Fig. 3.
A filter bank system is perfectly reconstructing if

G(z)H(z) = z−∆IN . (4)

The design of such a system can be demanding in terms of
the number of coefficients that need to be optimised. A re-
duction of the parameter space by, for example, deriving all
K filters from a prototype by modulation [2, 8] or by per-
mitting only symmetric filter impulse responses [8, 4] often
makes the problem tractable.

3. CHANNEL CODING VIA FILTER BANKS

The model of a channel codec based on filter banks is given
in Fig. 4 similar to [5]. In general, the analysis filter bank is
given, and should form a perfect reconstruction system with
the synthesis bank [6]. For OSFBs, there is no unique G(z)
that inverts H(z), given that H(z) admits a left inversion.
Amongst the manifold of possible solutions, the design free-
dom for choosing G(z) is exploited such that the impact of
noise on the transmitted signal is minimised in some sense.
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Figure 3: Synthesis filter bank with G(z) describing a K×N
MIMO system followed by a multiplexer.

The polyphase components X̂n(z) of the received signal

in Fig. 4 can be collected in a vector X̂(z), which is given by

X̂(z) = G(z) (Y (z) +W (z)) (5)

whereby Y (z) = H(z)X(z) ∈ CK(z) and W (z) ∈ CK(z) con-
tain the subband signal components of the transmitted data
and the noise, respectively. Selecting perfect reconstruction
filter banks according to (4), and w.l.o.g. setting ∆ = 0, an
error vector

E(z) = X(z)− X̂(z) = −G(z)W (z) (6)

is obtained.
To assess the total received noise variance σ2

e , let the
N -element vector e[m] contain the N time series with time
index m associated with the z-domain quantities in E(z).
Thus,

σ2
e =

1

N
tr{E

{
e[m] eH[m]

}
} , (7)

whereby tr{·} denotes trace and E{·} is the expectation op-
erator. With gn,k containing the coefficients of the nth
polyphase component of the kth synthesis filter such that
Gn,k(z) = [1 z−1 . . . z−Lg/N+1] · gn,k, and Lg being the
length of the synthesis filters Gk(z), the noise component at
the decoder output can be formulated as

e[m]=

 gT
0,0 gT

0,1 . . . gT
0,K−1

...
. . .

...
gT
N−1,0 gT

N−1,1 . . . gT
N−1,K−1


 w0[m]

...
wK−1[m]


= G w[m] (8)

with G ∈ CN×KLp/N holding the coefficients of G(z), and

w[m] ∈ CKLp/N . In (8), each vector wk[m] contains Lg
tap delay line values of the time series associated with the
noise quantity Wk(z), k = 0(1)K−1, in Fig. 4. Substituting
(8) into (7), we obtain similar to [3] for the received noise
variance

σ2
e =

1

N
tr {GRwwG} (9)

=
1

N
tr
{

GQΛQHGH
}

, (10)

Figure 4: General setup of codec
consisting of analysis filter banks as
encoder, an additive model for noise
interference, and a synthesis filter
bank as decoder.
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where Rww = E
{
wnwH

n

}
with modal matrix Q and

Λ = diag
{
λ0, λ1 . . . λKLp/N−1

}
(11)

with eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λKLp/N−1 arranged in
ascending order for later convenience. Therefore, ideally the
rows of G should lie in a subspace spanned by those eigenvec-
tor in Q which are associated with the smallest eigenvalues.
The result in (10) can be seen in contrast to the average
noise power

σ2
w =

1

K Lg
tr {Rww} (12)

in a subband signal. If the noise is correlated and G(z)
can be constructed to occupy a subspace where the noise is
lowest, then the synthesis filter bank decoder can reduce the
influence of the channel noise power.

4. FILTER BANK DESIGN

This section aims at designing the synthesis filter bank in a
perfectly reconstructing system given the second order statis-
tics of the corrupting noise, in order to minimise the noise
power at the decoder output, σ2

e as derived in Sec. 3. Hence
we can formulate the following
Design Problem. Solve

G = arg min
G
{tr
{

GRwwGH
}
} (13)

with the coefficient matrix G as defined in (8), subject to

G(z)H(z) = z−∆ (14)

with appropriate H(z) and delay ∆.

4.1 Constraints

Let us first inspect the constraint in (14). To ensure that
G(z) is invertible, structural constraints can be placed on
the polyphase synthesis matrix. As a consequence of a proof
in [6] for the analysis filter bank, the existence of an FIR
inverse is guaranteed if G(z) can be factorised as

G(z) = G0(z)

M∏
i=1

Vi(z) (15)

with Vi(z) = I− uiv
H
i + z−1uiv

H and ui, vi ∈ RN .
A simpler constraint is to force G(z) to be paraunitary,

such that H(z) = GH(z−1) is directly available. For G(z)
to be paraunitary, a necessary and sufficient condition is a
factorisation

G(z) = G0

M∏
i=1

Vi(z) (16)

with Vi(z) = I−viv
H
i +z−1viv

H
i and vi ∈ CK with ‖vi‖ = 1,

which follows as a consequence from a proof on H(z) in [9].

4.2 General Approach

Limiting the design to a paraunitary filter bank system is a
sever restriction and likely to be suboptimal in minimising
σ2
e . However, an unconstrained optimisation scheme can be

adopted to search for the components vi, i = 1(1)M , in
(16). Note that the order M of the polyphase components
may also have to be optimised.

For M = 0, the optimal filter bank fulfilling the design
problem in (13) and (14) is given by

G0 =
[
q

(0)
0 q

(0)
1 . . . q

(0)
N−1

]H
. (17)

As paraunitarity of G(z) implies G GH = IN , the rows of G
are unit norm vectors. The trace in (10) can be represented
by N Rayleigh quotients of such unit norm rows of G, which
are minimised by the eigenvectors corresponding to the N
smallest eigenvalues of Rww [10], as stated in (17).

Note that the cost function (10) is a fourth order polyno-
mial in the elements of the coefficient vectors vi, i = 1(1)M ,
and hence local minima in (10) are likely to exist with respect
to the parameters that need to be optimised. Nevertheless,
due to the considerable parameter search space for increas-
ing M , a suboptimal iterative design approach is suggested
below.

4.3 Suboptimal Iterative Design Algorithm

The proposed suboptimal design approach is an iterative
scheme based on the factorisation in (16), and can be out-
lined by the following steps:

Initialisation. Set i = 0 and determine R
(0)
ww ∈ CK×K

with modal matrix Q(0) and eigenvalues in Λ(0) ordered
according to (11). The optimal synthesis matrix is then
given by the coefficient matrix chosen according to (17).

Iteration. Set i = i + 1 and determine R
(i)
ww ∈

C
K(i+1)×K(i+1) A new polyphase synthesis matrix Gi(z)

is constructed by multiplying a paraunitary factor Vi(z)
to the previous solution Gi−1(z),

Gi(z) = Gi−1(z) ·Vi(z) . (18)

This factor Vi(z) is chosen such that

vi = arg min
vi
{tr
{

GiQΛQHGH
i

}
} (19)

where Gi is the coefficient matrix of Gi(z) analogous to
the definition in (8).

The iteration can be stopped after M iterations once a
specified noise variance σ2

e has been reached, or if no fur-
ther reduction of σ2

e by increasing the filter order appears
possible. Clearly the above algorithm is by no means opti-
mal; in particular having a globally optimal solution at step
i does not imply that despite global optimisation of vi+1 the
resulting Gi+1(z) is also globally optimal. However, the re-
sults obtained from it can still motivate the merits of the
general approach.

In our implementation, the optimisation at the ith step
of the iterative design scheme in (19) is accomplished by
an iterative simplex search algorithm. The simplex search
is started with the result of a random search for an initial
vector at step i, to avoid local minima. In the following, we
present some selected design results.

5. DESIGN EXAMPLE

In our simulation scenario, we consider aN/K = 1/3 channel
codec with N = 2 and a transmission over K = 6 separate
channels. The channel noise is mutually uncorrelated with

respect to the channels, i.e. the covariance matrices R
(i)
ww

are block diagonal, however noise on the first four channels
has a smaller variance and is spectrally shaped, as evident
from the power spectral densities in Fig. 5.

As evident from the adapted magnitude responses, the
filter bank design algorithm deselects the two channels with
the highest noise power from transmission, which is already
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Figure 5: Noise power spectral densities and magnitude re-
sponses of the designed synthesis filters at design stages
m = 0 and m = 30, for all K = 6 transmission channels.
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Figure 6: Evolution of the cost function value σ2
e .

accomplished in the initialisation step m = 0. Thereafter,
as the cost function evolution in Fig. 6 shows, the correla-
tion within each channel if further exploited to reduce the
received noise power σ2

e , and the transmission balanced over
the first four channels. It is also interesting to note that the
cost function is not monotone decreasing.

6. DISCUSSION

The oversampling ratio K/N describes the amount of redun-
dancy introduced into the system. If there is any correlation
between theK channels, or the noise power on different chan-
nels varies, then the K eigenvalues of the covariance matrix

R
(0)
ww ∈ CK×K are unbalanced. The OSFB codec can ex-

ploit this by utilising the eigenvectors corresponding to the
N smallest eigenvalues to construct the synthesis filter bank
according to (17).

Increasing the filter length Lp does not affect the re-
dundancy of the codec, but can lead to further reduction of
the noise variance in the receiver, since the eigen spectrum

of the covariance matrix R
(i)
ww, i ≥ 1 is finer resolved. The

OSFB codec can take this into account by additionally shap-
ing the transmitted signal in order to transmit in a low-noise
subspace, as demonstrated in Sec. 5. However, increasing
Lp potentially also introduces more noise into the encoder,
similar to trade-off considerations for the length of a linear
equaliser [11].

7. CONCLUSIONS

We have considered the use of oversampled filter banks in the
context of channel coding, and presented a constrained opti-
misation scheme to minimise, subject to the filter banks be-
ing perfectly reconstructing, the noise power at the decoder
output. We have proposed to implicitly fulfil the constraints
by optimising factorisations of the polyphase synthesis ma-
trix that guarantee its paraunitarity. A suboptimal iterative
scheme was proposed and demonstrated. Both the example
presented here and results in [3, 6] suggest that OSFBs can
be powerful tools for channel coding. Therefore, our current
work focuses on alternative or re-iterated update schemes,
in order to obtain a globally optimal filter bank design that
can fully exploit any correlations in the channel noise.
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