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ABSTRACT

Multiple description coding (MDC) is a joint source-channel cod-
ing technique specifically designed for real-time multimedia appli-
cations over best effort switched packet networks (such as Inter-
net), in order to cope with packet losses due to transmission errors
or network congestion. Error resilience of transmitted bitstreams is
thus significantly increased, but this does not solve problems like
bitstream adaptation to bandwidth variations or receiver character-
istics, which are in turn addressed by scalable coding techniques.

In this paper, we present a new method of multiple description
coding of scalable video, combining the scalability features with
MDC. It is based on a motion-compensated spatio-temporal sub-
band decomposition, where the redundancy is tunable in a frame-
like non-linear temporal representation.

1. INTRODUCTION

Video communication over Internet and wireless networks is be-
coming increasingly popular. However, reliable transmission of
the video over such networks poses many challenges. This is not
just due to the inherently lower bandwidth provided by these net-
works as compared with traditional delivery networks, but also due
to the associated problems such as congestion, competing traffic,
fading, interference, mobility, all of which lead to losses. Mul-
tiple description coding (MDC) includes a set of techniques that
can improve the robustness of video to such losses [1], [2], [3],
[4]. MDC involves creating correlated coded representations of
the video and transmitting them on separate channels for improved
error resilience. This is done in a way that acceptable video qual-
ity can be obtained using a subset of the descriptions, with the
quality improving as the number of subsets received increases.
The motivation for using MDC is to introduce redundancy at the
source coder to combat transmission failures. In this sense, MDC
is a way of accomplishing joint source and channel coding. This
trade-off between resilience and redundancy needs to be properly
exploited for successful video delivery. Moreover, studies have
shown [5] that MDC has advantages over other error resilient cod-
ing techniques (such as layered coding with unequal error protec-
tion) when the network is very lossy (e.g. packet loss rate higher
than 25%). However, most MDC coding techniques proposed so
far are built on top of a non-scalable motion compensated pre-
diction framework. A key disadvantage of this approach is that
non-scalable MDC can only improve the error resilience of video
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transmitted over unreliable wired and wireless networks, but it is
not able to address two other important challenges associated with
the robust transmission of video over unreliable networks: adap-
tation to bandwidth variations and receiving device characteris-
tics. In other words, a shortcoming of several existing MDC tech-
niques is that the achievable redundancy and one-description dis-
tortion is fixed. To accommodate varying network environments
and QoS requirements, it is desirable to have a coder that can re-
alize variable trade-off between redundancy and one-description
distortion, or essentially total rate and average distortion. In a pre-
liminary work [6], we have developed a new scheme for MDC,
using wavelet based interframe coding schemes [7], that results
in highly efficient and error resilient bitstreams, which are also
spatio-temporal-SNR scalable to allow easy adaptation to network
and device variations. We use the inherent ability of lifting based
motion compensated temporal filtering schemes [8], [9], [10] to
recover missing information, and partition the resulting bitstreams
so that the video may be transmitted over multiple channels. We
vary the amount of redundancy introduced through this partition-
ing to increase the robustness to packet-losses, and present video
quality results under different loss scenarios and bandwidth condi-
tions.

In this paper we propose an improved scheme for multiple de-
scription scalable video coding, in which the redundancy is achie-
ved by temporal oversampling of a motion compensated 3-band
lifting structure [11]. The advantage of these schemes are that the
3-band representation allows for a reduced redundancy compared
with an oversampled 2-band scheme. The redundancy factor can
be tuned according to the number of decomposition levels, result-
ing in a very flexible and robust scheme.

The paper continues in Section 2 by reviewing the motion-
compensated 3-band lifting scheme. In Section 3 we introduce the
new MDC temporal scalable video codec. Section 4 presents some
simulation results and we conclude in Section 5.

2. THREE-BAND MOTION-COMPENSATED LIFTING
SCHEME

The motion-compensated 3-band scheme on which the proposed
MDC system is based is presented in Fig. 1.

We use a “Haar-like” motion-compensated (MC) 3-band (3B)
scheme, as presented in [11], where the two predict operators are
the simplest forward and backward temporal predictors only based
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on one past resp. future frame, and the update operators are also
very simple, involving only one detail frame. The three output
subbands are thus computed as:

hi(n) = z341(n) — x5 (n — v ), t EN

hy (m) = z3t—1(m) — x3¢e(m — v3_,), t € N*
1 1 _ _

ly(p) = §$3t(p) + 1 [h?(p + ”;,rtﬂ) +hy (p+ vSt—l)] )
where we denoted by v the forward motion vector used to predict
frame ¢ and by v, the backward motion vector corresponding to
the same frame. The spatial positions m, n, p are on the same
motion trajectory respectively in the frames 3¢ — 1, 3¢ + 1 and 3t.

This scheme enters the classical lifting framework, where the

perfect reconstruction is easily achieved by inverting the order of
operations and the sign of the operators.

3. TEMPORAL SCALABLE MDC OF VIDEO

First, we present how the two descriptions are built, then we anal-
yse the redundancy of the scheme. Further, the reconstruction is
discussed when one description is lost and when both of them are
received and finally building the MDC scheme on a temporal de-
composition with several levels is presented.
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Fig. 1. Three-band temporal lifting scheme (in brackets, the input
polyphase components for the oversampled structure used in the
MDC system).
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3.1. Building the two descriptions

An MDC scalable video system has been proposed in [6], where
the two descriptions had in common the low-pass band and the two
types of detail subbands belong to different descriptions.

The multiple description scheme we propose here is built on
the temporal 3B MC structure in Fig.1, by subsampling by a factor
2, instead of a factor 3. This leads actually to an overcomplete tem-
poral 3B structure, with non-linear operators involving ME/MC.
The two descriptions correspond to the output subband frames of
this scheme for even, resp. odd .

The temporal synchronisation of the frames in the two descrip-
tions thus obtained with the original frames and with the subbands
resulting from a non redundant 3B encoder is illustrated in Fig. 2.
We keep the lower index notation for the temporal moment, while
the upper index refers to the description number.

3.2. Redundancy analysis for one level

Let us now compute the redundancy factor of the above scheme.
We denote by L the sequence length. In the non-redundant en-
coder the frames are processed by three: 3n, 3n + 1, 3n + 2, with
n € {0,..., N}. The sequence length is therefore L = 3(N +1).
In the redundant encoder the frames processed in a GOF are 27/,
2n' +1,2n' + 2, where n’ € {0, ..., N'}. The number of output

frames in the two descriptions is therefore L' = 3(N’ + 1) and
/

the redundancy factor, denoted by p will be: p = L— In order to
compute p, we need an entire number of GOFs in each description
(and we consider the same number of GOFs in the two descrip-
tions) and also in the non-redundant encoder. This means that the
temporal moment 3n + 2 for n = N needs to be the same as
2n’ + 2 forn’ = N’'. We get then 3N = 2N’. By introducing
N N -
P= 32 =73 we obtain:
L' 3(N'"+1) 3(8P+1) 3P+1
L 3(N+1) 302P+1) 2P+1

For P — oo, the redundancy factor p — 3/2, as expected, but it
is slightly higher for small P.

3.3. Reconstruction of one redundant level

If one of the description is lost, then only three over four of the
original frames can be directly reconstructed. The missing frames
can be interpolated from their neighbors, by averaging these frames,
after motion compensation. In order to be able to perform the mo-
tion compensation, the available motion vector fields are extended
in the opposite direction to obtain the missing fields.

If both descriptions are received, all the original frames can be
decoded, so perfect reconstruction is achieved. Moreover, for each
even frame 2n, n € {1,..., N — 1} two reconstruction options
are possible at the decoder side, from one description or from the
other. This redundancy can be exploited to improve the quality
of the reconstructed frame. For example, it can be obtained as
the mean of the two lower quality reconstructed frames obtained
independently from the two descriptions.

3.4. Multiple levels

The compression performance of the subband scheme being de-
pendent on the number of temporal decomposition levels, the above
redundant scheme can be extended to several levels. A possible ex-
tension consists in interlacing the frames of the two approximation
subbands at the first temporal level and then iterating the scheme
on this new “sequence”. At the second level we have therefore
1/2 % L detail frames and 1/2 % 1/2 * L approximation frames.
The redundancy factor is here 1/(1 + 1/2 4+ 1/4) = 7/4 (asym-
ptotically). For a number of decomposition levels jmaqe — 00, the
redundancy factor tends to 2.
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Fig. 2. Temporal synchronisation of the frames in the two descriptions (one decomposition level).

Note that in our redundancy analysis we only considered the
number of frames. However, approximation and detail frames are
not allocated the same number of bits, which also depends on the
temporal level. The bit allocation procedure can also be used to
tune the quality of the reconstructed sequence from both descrip-
tions, taking into account that one over two frames in this case are
obtained by averaging frames from the two descriptions.

In order to reduce the redundancy of the scheme, we propose
to iterate in a different way (see Fig. 3). For the first levels, groups
of three frames are alternatively processed in one description or the
other, the resulting approximation frames interlaced and only at the
last level (in Fig. 3, the second one) the redundancy is achieved
by overlapping the GOFs. The reconstruction from one or both
descriptions follows the same principles as for the scheme with
one decomposition level.

The redundancy in this case is introduced at the coarsest tem-
poral decomposition level. We have for j,q. levels an asymptotic
redundancy factor p = 1 4 1/3ma= x 3/2, much reduced com-
pared with the first scheme.

4. SIMULATION RESULTS

Spatio-temporal coefficients and motion vectors (MV) are encoded
within the MC-EZBC framework [7, 12], where MV fields are first
represented as quad-tree maps and MV values are encoded with
a 0-order arithmetic coder, in raster-scan order. The MC tempo-
ral filteirng is performed using Hierarchical Variable Size Block
Matching (HVBSM) algorithm with block sizes varying from
64 x 64 to 4x4 and an 1/8th pel accuracy for MC.

We have tested the proposed algorithm on several CIF se-
quences at 30fps. In Figs. 4 and 5, we compare the rate-distortion
performance of the non-robust 3-band scheme with that of the
MDC central decoder on “foreman” and “mobile” sequences. Two
decomposition levels were used, corresponding to 15% redundancy.
One can remark that the loss in coding performance in noiseless
environment of the redundant codec is around 1 dB. The available
bitrate is equally distributed between the two descriptions. The lat-
eral distortions are thus represented for the global bitrate, each one
of them using however only half of it. Note that the second descrip-
tion has higher reconstruction error, which is related to a slight
asymmetry in the reconstruction scheme. Indeed, when loosing
the first description, the detail frames of the second description at
the first level are missing, while when loosing the second descrip-
tion the details of the first one exist. In Fig. 5 note for example
that at 500 kbs the reconstruction when only the first description is
received has comparable distortion with that of the non-redundant

foreman CIF (2 decomposition levels)

YSNR (dB)

—#— 3-band scheme without redundancy
-6~ MDC central decoder
25 —+ first description

—- second

. . . ) : :
250 500 750 1000 1250 1500
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Fig. 4. Central and lateral distortions of the MDC scheme com-
pared with the non robust 3-band codec for two decomposition
levels (“foreman” CIF sequence, 30 fps). The bitrate corresponds
to the global rate for the robust codec (both descriptions).

codec, which shows that the interpolation strategy is very effective
at this bitrate.

5. CONCLUSION

In this paper we have presented a new framework for building mul-
tiple descriptions of scalable video coding, in which the robustness
is achieved by temporal oversampling of a motion-compensated 3-
band lifting structure. The redundancy factor is tunable over the
number of temporal decomposition levels, and for typical values
(15%), the loss in coding performance in noiseless environment is
only around 1 dB compared with the non robust scheme. The re-
construction based on a single description has good performance,
due to a motion-compensated temporal interpolation of missing
frames.
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Fig. 3. MDC scheme with reduced redundancy for 2 temporal decomposition levels (first level is non-redundant, second level introduces
redundancy). Circles and triangles represent the frames in the first, resp. second description.
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