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ABSTRACT 

This paper is concerned with the problem of recovering a 
discrete signal from a set of irregularly spaced samples. The 
approximation method is based on spline functions using non-
uniform B-splines. According to the various knot sequence 
configurations, several bases can be used. We study the 
important issue of selecting an adequate basis of the spline 
function. The analysis shows that the choice of the elements and 
dimension of the basis has a strong influence on the quality of 
the signal approximation. For a given degree of the spline and 
for a particular knot sequence configuration, the smallest 
dimension of the basis provides good performances compared 
to the basis spline of higher dimension. Moreover this basis, 
with the smallest dimension, requires only two consecutive 
knots for the construction of its elements. The theoretical results 
are illustrated with examples. 

1. INTRODUCTION 

The majority of the theoretical tools developed in the field of 
digital signal processing are based on a uniform distribution of 
the samples. However, the non-uniform sampling problem 
arises naturally in many scientific fields such as geophysics, 
astronomy, meteorology, medical imaging, computer vision … 
In this paper, we are interested in the problem of recovering a 
discrete signal from its irregularly spaced samples. The 
proposed study is carried out within the framework of future 
investigation in the topic of data compression. The redundancy 
of information can be controlled by a variable sampling rate. 
Indeed, the sampling rate of a signal is adapted to its 
instantaneous frequencies involving a non-uniform distribution 
of samples. We suppose that the sample locations are known. 
The interval of time, between two consecutive samples, is 
supposed to be an integer multiple of some underlying sampling 
period of the discrete signal. Among the significant number of 
reconstruction methods, we retain the interpolation methods 
related to piecewise polynomial functions. Moreover, we focus 
on the polynomial functions based on non-uniform B-spline 
functions because they provide many interesting properties [1]. 
We study how the elements and the dimension of the spline 
basis influence the quality of the approximation. 
This paper is organized as follows. The next section, section 2, 
introduces elementary properties of the non-uniform B-spline 
functions. Section 3 presents the spline function based on non-
uniform B-splines. The approximation method is developed in 
section 4. According to selected knot sequence configurations, 

several spline bases can be built. The evaluation of the B-
spline coefficients is explicitly given. The influence of the 
dimension and the elements of the spline basis are 
investigated. The upper bounds of the estimate error are 
provided. A difficulty arises when some parameters have to be 
estimated: in fact, some of the interpolation methods require 
the knowledge of derivatives of the signal. We show that a 
simple procedure allows accurate estimate. Section 5 illustrates 
the theoretical results and the approximation procedures 
through some examples. Section 6 concludes. 

2. BASIC PROPERTIES OF THE NON-
UNIFORM B-SPLINE FUNCTIONS 

In this section, we review the basic properties of the non-
uniform B-spline functions. The definition of a non-uniform B-
spline function has been proposed initially by Curry and 
Schoenberg [1]. Given a set of 2+k  samples, located at known 
knots. The knots sequence t  is organized according to an 
increasing order 1... ++<< kjj tt . For Rx∈ , the jth  non-
uniform B-spline function of order 1+k  (degree k ), is 
denoted either )(,, xB tkj  or )(, xB kj . It is given by the 
following equation: 

k
kjjjkjtkj xttttxB +++++ −−= )](.,...,)[()( 11,,  (1) 

This equation is based on the thk )1( +  divided difference 
applied to the function kx +− )(. . The definition of the divided 
difference is as follows:  
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where )0,max()( xtxt −=− +  is the truncation function. 
The B-spline function is represented by a piecewise 
polynomial of degree k . It is a positive function on the 
interval [,...,] 1++kjj tt  and has a finite support. If a knot in the 
sequence t  has a multiplicity of order 1+µ , i.e. the knot 
occurs 1+µ  times, then the definition of the divided 
difference applied to the function kxg +−= )(.  becomes: 
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Equation (3) relates the multiplicity jµ  of a knot jt  to the 
number of times ( 1−jr ) that the B-spline function is 
continuously differentiable at the knot jt : 

1+=+ kr jj µ  (3) 
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3. THE NON-UNIFORM SPLINE FUNCTIONS 

The linear combination of the non-uniform B-spline functions 
{ })(,, xB tkj  of degree k , associated to the knot sequence t , is 
called the spline function. It is given by: 

∑=
j

kjj xBaxf )()( ,  (4) 

where { }ja  are the B-spline coefficients, and x  is the knot for 
which the sample value will be evaluated. 
Let t  be a strictly increasing sequence { }11 ,..., +ltt , and a 
nonnegative integer sequence { }lrrr ,...,2=  with krj ≤  for 

lj ,...,2= . The spline space is denoted rtk ,,∏ . It is the linear 
space spanned by the polynomials of degree k  associated to 
the knot sequence t  and satisfying the r  relative conditions to 
the derivative continuity. The dimension of the spline space is 
given by the following equation [1, 6]: 
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The set of the non-uniform B-splines { }knjkj BB ,1, ,..., −+  of 
degree k  generates a basis for the space rtk ,,∏ . For a given 
degree k , equation (5) means that the elements and the 
dimension of the spline basis are closely related to (i) the length 
of the selected knot sequence and (ii) the multiplicity of each 
knot in the sequence. Thus, the representation of a spline 
function in terms of B-splines is not unique. Before developing 
the approximation methods for a signal reconstruction, we 
describe in the following sub-sections, the different spline 
functions obtained on three particular knot sequence 
configurations denoted Seq 1, Seq 2 and Seq 3. 

Case 1: The first knot sequence configuration 
We start with the traditional spline function. Each knot 
belonging to the interval [ ]11,ba  has a multiplicity of order 1. 
The knot sequence, denoted Seq 1, is as follows: 

111111 ......... btttta knnk =<<<<<<= ++++  Seq 1 
The spline space is spanned by the combination of 1+k  B-
spline functions { }knk BB ,,1 ,...,  on the intersection interval 
[ ]21, ++ kk tt . These B-splines have been extensively studied for a 
uniform repartition of knots [2, 3, 4]. 
Case 2: The second knot sequence configuration 
A multiplicity of order 1+k  is imposed to the first and the last 
knots of the sequence defined on the interval [ ]22 ,ba . While each 
knot inside the interval has a multiplicity of order one. The knot 
sequence, denoted Seq 2, is given as follows: 

211112 ......... btttta knnk ===<<=== ++++  Seq 2 
The spline space is spanned by the combination of n  B-spline 
functions { }knk BB ,,1 ,..., . According to equation (5), the spline 
basis dimension depends on the number of knots available 
inside the interval ] [22 ,ba . 
Case 3: The third knot sequence configuration 
The sequence is composed only of two consecutive knots. Each 
knot has a multiplicity of order 1+k . The knot sequence, denoted 
Seq 3, is presented as follows: 

311113 ...... btttta knnk ===<=== ++++  Seq 3 
For a given degree k , this configuration of knots provides the 
smallest spline space dimension equal to 1+k . Whatever the 
degree of the spline, the construction of the basis elements has 
been generalized [1]. The 1+k  first knots are renamed by jλ  
( kjjjj ttt ++ ==== ...1λ ) and the 1+k  last knots by 1+jλ  
( nkjkjj tt +++++ === ...11λ ). For any degree k  of the spline, the B-
spline functions are generalized by the following equation: 
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for ki ≤≤0  and 1+≤≤ jj x λλ . 

where ( ))!(!! ikikC i
k −=  is the binomial coefficient. For the 

special values of the knots, 0=jλ  and 11 =+jλ , the basis 
elements are identical to the Bernstein polynomials of any 
degree k : 

)0()1()( kixxCxB iiki
k

k
i ≤≤−= −  and 10 ≤≤ x  

In this special case, the spline function is called Bézier curve 
and is used extensively in the CAGD [6]. 

4. THE APPROXIMATION METHOD 
The reconstruction method is based on an interpolation method 
using spline functions. The method is closely related to the 
process of evaluating the B-spline coefficients so that the 
resulting spline function satisfies the imposed criteria. In the 
literature, many approximation methods have been developed. 
The most popular one is used in the CAGD. It is known as the 
variation diminishing spline approximation [5]. The B-spline 
coefficients are given directly by the signal values defined at 
the control points (knot averages of the sequence t ) of the 
spline. In this paper we try to keep the number of information 
taken from the signal as small as possible, hence we do not use 
this method. Several questions arise concerning the quality of 
the reconstructed signal. In the following sub-sections, we 
study and compare the performance of the approximation 
method based on each knot sequence configuration (Seq 1, 
Seq 2, Seq 3). 

4.1 Evaluating the B-spline coefficients 
Given a set of sampled discrete signal values { })( ity  defined at 
non-uniform knots { }it , the problem consists in finding a 
spline function f  in the spline space. This results in the 
evaluation of the n  unknown B-spline coefficients { }ja  such 
that the spline function satisfies the interpolation conditions: 
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where: 
1+= km , if the selected knot sequence corresponds to the 

description given by the case 1 (Seq 1); 
1=m , if the selected knot sequence corresponds to the 

description given by the cases 2 and 3 (Seq 2, Seq 3). 
These interpolation conditions provide 1 +− kn  equations. 
Thus, 1−k  other equations are necessary. We supplement the 
number of equations to n  with the successive qth  order 
derivatives of the spline function evaluated at the first and last 
knots where the spline basis is defined: 
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where q  is the derivative order of the spline function. It is 
determined by ( ) 21−= kq  (where  .  is the floor function). 
Therefore, the n  B-spline coefficients are evaluated by 
solving the linear system of n  equations. 

4.2 Approximation errors 

In this section, we analyze and compare the performance of the 
approximation methods. We introduce briefly some classical 
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results such as the distance of a function to a polynomial. To 
measure the approximation error, we use the uniform norm 
which is a bounded function g  defined on an interval ],[ ba :  

bxa
ba
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= )(sup
],[

 

Let us consider a given function g  in ],[1 baC k+  (i.e. g  has 
1+k  continuous derivatives on ],[ ba ). The approximation of 

the function by a polynomial of degree k  involves an error 
which is referred to as the distance from g  to the space kπ  of 
polynomials of degree k≤  and is defined as follows [5]:  

[ ]( ) [ ]bakba g-pgdist
,p,  inf  ,

kπ
π

∈
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The upper bound for the distance from g  to polynomials of 
degree k  is:  

[ ] ( )
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where abh −=  and the constant ( )[ ] 11 !12 −+ += kK k
k  depends 

only on the degree k  of the polynomial [5]. 

We focus, in this section, on the upper bound of the distance 
from the signal g  to the spline space ( fg − ). Therefore we 
need to compute the upper bound of the spline function. It is 
closely related to the B-spline coefficients. According to the 
properties of the B-splines we get: 
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The resolution of the linear system, described in sub-section 
4.1, shows that the B-spline coefficients are given by a 
weighted combination of the signal values and its derivative 
values. The weights depend on the distance between 
consecutive knots belonging to the same knot sequence. 
Therefore, it is important to have a good approximation of the 
derivatives. 
It is well known that when the degree of the spline function 
increases the approximation error decreases [1, 5]. For this 
reason, we are interested more particularly on the elements and 
the dimension of the spline basis for a given degree k . Indeed, 
for a fixed degree, the spline function can be represented by 
many bases of equal or different dimensions. The goal of this 
section is to study the influence of these bases on the quality of 
the reconstructed signal. We propose to follow two steps. 

First step: The degree of the spline function is fixed, while its 
basis dimension varies. Increasing the dimension of the spline 
basis, results in widening the definition field [ ]22 ,ba  of the 
spline. This change requires the evaluation of the new B-spline 
coefficients. We note that these coefficients depend not only on 
the 1 +−kn  information related to the signal values, but also on 
the derivatives of the signal. The upper bound of the spline 
function, given by equation (6), is then affected and involves an 
increase of the upper bound of the approximation error. We 
note the approximation error 
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i) ,,( Seqnkε , depending on the spline degree k , its dimension 
n  and the knot sequence configuration. We set 1−++ −= ijiji tth  
for 1,...,1 ++= kni  and ii abh −=  for 3,2,1=i  according to 
the selected sequence. 
Some upper bounds of the approximation errors are given for 

2=k  and some dimensions 6,5,4,3=n . 
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The comparisons of these upper bounds show that the smallest 
one is given for the smallest dimension of the spline space 
( 3=n ). It corresponds to the third knot sequence 
configuration Seq 3. These results remain valid for degrees 
higher than 2. 

Second step: The degree of the spline function and the 
dimension of the basis are fixed. Moreover, the dimension is 
equal to the smallest possible value, i.e. 1+k  (corresponding 
to the first and third knot sequence configuration (Seq 1 and 
Seq 3). In the third knot sequence configuration (Seq 3), the 
first and the last B-spline coefficients of the spline are 
respectively equals to )( 1ty  and )( 1+−knty  whatever the degree 
of the spline. While, for the knot sequence configuration Seq 1, 
these coefficients depend not only on )( 1+kty  and )( 2+kty  but 
also on the derivative values of the signal. This difference 
affects the upper bound of the approximation error. Some 
upper bounds of the approximation errors are given for 2=k  
and 3=n . 
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We deduce that the second upper bound of the approximation 
error is greater than the first one. These remarks remain valid 
for higher degrees. 

5. EXPERIMENTAL RESULTS 

In this section, we present some experimental results to 
illustrate how the spline basis influences the performance of 
the signal approximation. 
Let us remember that the resolution of the linear system 
requires the qth  order successive derivative values at the first 
and last knots of the sequence where the spline function is 
defined. The signal ( )(ty ) to be interpolated is known only 
through some data points { })( ity . The qth  order derivative 
values can be approximated either by this traditional equation 
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or with a polynomial of degree k  on the interval [ ]1, +−knm tt  
where the spline function basis is defined. In this case, we 
chose to estimate the qth  order derivative values, in any knots 
belonging to the interval, from this polynomial. 
We generate a discrete signal which is then randomly sub-
sampled. For different percentage of samples to be 
interpolated, we reconstruct this signal from a spline function 
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of degree 5 using the knot sequence configurations Seq 1 and 
Seq 3. Remember that in these cases, the interpolation is carried 
out by two different spline bases having the same dimension. 
Figure 1 provides the maximal reconstruction error (in dB) for a 
given non-uniform distribution of samples. The figure shows 
that better approximation results are obtained when we 
approximate the derivative values from a polynomial of 
degree 5. Moreover, to check the performance of the derivative 
approximations we have replaced those by the theoretical 
derivative values of the signal. Figure 1 shows that the 
theoretical ones introduce differences between the interpolation 
methods. 
Figure 2 provides the maximal approximation errors versus 
sampling steps and different dimensions 9 ..., ,4=n . These 
simulations were carried out with the estimate derivatives given 
using a polynomial of degree 3. We see that the dimension of 
the spline basis influences on the interpolation signal. For a 
given spline function of degree 3, we note that the basis of the 
smallest dimension (Seq 3) gives better results than higher 
dimensions (Seq 2). Table 1 compares the information 
necessary to interpolate a signal from each of the 3 sequences, 
on the same interval [ ]21, ++ kk tt . Let us take for example the 
function spline of degree 5. The sequence 1 uses 12 knots to 
build the elements of its basis, 2 samples, 2 first derivative 
values and 2 second derivative values. While the sequence 3 use 
only 2 knots for the construction of its base, 2 samples, 2 first 
derivative values and 2 second derivative values on the same 
interval. The reconstruction method based on the sequence 1 
requires k2  additional knots compared to sequence 3. Note 
that in our case, all this information were estimated from the 
same total number of samples of the signal. 
 

Sequences Knots Samples Derivatives 
Seq 1 )1(2 +k  2  2/)1( −= kq  
Seq 2 1+− kn  1+− kn   2/)1( −= kq  
Seq 3 2 2  2/)1( −= kq  

Table 1: Comparisons of the required information according to 
the sequences 

6. CONCLUSIONS AND PERSPECTIVES 

This paper is concerned with the problem of recovering a 
discrete signal from a set of irregularly spaced samples. The 
reconstruction method is an interpolation method based on non-
uniform B-spline functions. We showed that the knot sequence 
configuration influences on the quality of the reconstructed 
signal. Among the three knot sequence configurations, in 
absence of noise, we privilege the sequence which is built only 
from two consecutive knots (Seq 3). In this sequence each knot 
has a multiplicity of order 1+k . The corresponding basis is 
easily constructed. The elements of this basis depend only on 
these two consecutive knots, whatever the degree of the spline. 
While for the two other sequences (Seq 1 and Seq 2), as soon as 
the degree of the spline increases, the number of knots to be 
used for the construction of the B-spline elements is significant. 
Moreover their computation becomes difficult. With a good 
approximation of the derivative values, the interpolation 
method provides interesting results in term of the quality of the 
approximated signal. Unfortunately, all these approximation 
methods, whatever the basis spline, are sensitive to the presence 

of noise. This is due to the derivatives required by the B-spline 
coefficients. Indeed, it is well known that the derivative 
amplifies the presence of noise in a signal. It is thus necessary 
in this situation to find the B-spline coefficients according to 
an approximation method which minimizes, for example the 
reconstruction least mean square error. This will be the topic 
for further work. 
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Figure 1: The maximal interpolation errors (in dB) versus the 
percent of samples to be interpolated; with: theoretical 
derivatives for (*) Seq 3 and (+) Seq 1; traditional 
approximation derivatives for (o) Seq 3 and Seq 1; polynomial 
approximation derivatives for (x) Seq 3 and Seq 1. 
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Figure 2: The maximal interpolation error (in dB) versus 
sampling step: for the dimensions 4=n  (o), 5=n  (□), 6=n  
(x), 7=n  ( ∆ ), 8=n  (+) and ).(  9 <=n  
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