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ABSTRACT

In this paper, we develop a multivariate statistical approach
for image denoising in the wavelet transformed domain. To
this respect, the wavelet coefficients of all the image channels
at the same spatial position, in a given orientation and at the
same resolution level, are grouped into a vector and a max-
imum a posteriori estimate is derived from a multivariate
Bernouilli-Gaussian prior. The parameters of this statistical
model are computed recursively from coarse to fine resolu-
tions in order to exploit the inter-scale redundancies between
the wavelet coefficients. Simulation tests performed on re-
mote sensing multispectral images indicate that the proposed
procedure improves the conventional wavelet-based denois-
ing methods.

1. INTRODUCTION

Most images are corrupted by noise due to the imperfections
of the acquisition systems and the communication channels.
Therefore, much attention has been paid in developing ef-
ficient denoising methods which can be classified into non
Bayesian methods and Bayesian ones [1]. The first cate-
gory of methods often assumes that the unknown signal is
deterministic whereas in the second one, the unknown im-
age is considered as a realization of a random field with a
given prior probability distribution. Therefore, the challeng-
ing task consists in selecting a realistic prior distribution
that allows a both efficient and tractable denoising approach.
To this respect, statistical models in the Wavelet Transform
(WT) domain have been proposed in [2, 3]. The rationale is
that the statistics of many natural images, once transformed,
are simplified thanks to the good energy concentration and
decorrelation properties of the WT [4]. In earlier works,
the wavelet coefficients have been considered as independent,
identically distributed (iid) according to a Generalized Gaus-
sian Distribution (GGD) and, the related Maximum A Pos-
teriori (MAP) estimate have led to wavelet thresholding rules
for a wide class of noise distributions [5, 6, 7]. Another alter-
native consists in considering the wavelet coefficients as in-
dependent variables distributed according to Gaussian mix-
tures [8, 9, 10], which allows to deduce appropriate denoising
rules. However, in practice, the wavelet coefficients are not
statistically independent since it has been noted that large-
magnitude coefficients tend to occur at the same positions
in subbands at adjacent scales [11]. An effort has been per-
formed in order to design prior distribution that capture the
inter-scale dependencies such as the hidden Markov models
[11] or the Markov random field models in the WT domain
[3, 12]. Recently, the bivariate shrinkage has appeared as an
appealing tool due to its good performances [13].

In parallel to these works, much interest has been dedicated
to noise removal in multichannel images acquired by sensors
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operating in different spectral ranges. Two main approaches
are possible: process separately each component or process
simultaneously the spectral component according to a mul-
tivariate approach [14]. In the latter case, an attempt has
already been made in order to exploit the spectral redun-
dancies. Indeed, in [15] we have developed an efficient MAP
estimation of the wavelet coefficients based on a multivariate
Bernouilli-Gaussian models. These models reflect the sparse-
ness of the wavelet representation as well as the statistical
dependencies existing between the different components. In
this paper, we investigate the inter-scale redundancies in or-
der to improve the performances of this new multivariate
estimation procedure. The paper is organized as follows. In
Section 2, the theoretical background is presented. In Sec-
tion 3, we propose a very simple method that takes into
account the inter-scale dependencies. In Section 5, experi-
mental results are given and some concluding remarks are
drawn.

2. THEORETICAL BACKGROUND
2.1 The observation model

The unknown multichannel image consists of B € N* spec-
tral components s of size L x L with b € {1,..., B}. These
components are corrupted by an additive noise and, the ob-
servation vector r is expressed in the spatial domain as fol-
lows:

Vme {1,...,L}?, r(m)=s(m)+ n(m) (1)
where the noise n(m) = (n(m),...,n®) (m))? is iid
N(0,R™), independent of s(m) = (s (1)( )y...,sB) (m))7T.
A separable J-stage WT is applied to each component r® of
r and generates at each resolution j, 3 wavelets coefficients
r](b’o) oriented horizontally (o = 1), vertically (o = 2) or di-
agonally (o = 3), all being of size L; x L; with L; = L/27.
Then, the coefficients r{*°) of all the B channels at the same
spatial position k in a subband of the same orientation o
and, at a given resolution level j, are stacked into an obser-

2 k), ..., rP (k)T As the
WT is linear, rj(o)(k) = s(o)(k) +n(°)(k) where s(o)( k) and
n§ )(k) are defined similarly to r(o)(k). It is easy to check
that n{” (k) ~ A’(0,T'{"”) where I'{""*) = R("). Unlike the
conventional approach it is worth notlng that the multivari-

ate approach allows to take into account the inter-channel
correlation between the noise samples by selecting a non di-

agonal matrix I‘E"’O).

vation vector r(o) (k)

In the sequel, the noise covariance
matrix R™ is assumed to be known.
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2.2 Prior Model

In the Bayesian framework, the “clean” wavelet coefficients
sj(o) are viewed as realizations of random processes. Follow-
ing [8, 9, 10], we have extended this approach to the vector
case by introducing multivariate Bernouilli-Gaussian (BG)
priors able to reflect the sparness of the wavelet represen-
tation. Hence, the probability distribution p(o) () §

expressed as:

ofs

vueR”, p(u)=(1-€”)d(u) + ”gor(s o (u), (2)

where ¢ is the Dirac distribution, G (0 denotes the prob-
g

ability density of a zero-mean multivariate Gaussian vector
with covariance matrix 1"5-5’0) and, 65—0) € [0,1] is the mixture
parameter. In order to avoid degenerate MAP estimates, it is
used to couple the mixture model with hidden iid Bernouilli
random variables q(o)(k) such that:

p(sy’ (k)/q(o)() ) =

551 (k)
P& = ¢k =1) = @), @

Jo,r= (s;

with P(q](-o)(k) =1) = 6;—0). In this context, the denoising
problem reduces to a classical problem of estimation theory.
The hidden varlables q( °) can be estimated and the MAP

A(o)

estimator §:°’ of s- is derived. Finally, the inverse WT is

applied to the estimate § ”( ) in order to get the estimate of

the spectral components, 1n the spatial domain.

3. INTERSCALE MAP ESTIMATION
3.1 Estimation of the Hidden Variables
In the case of binary random variables, the MAP estimator is
the Bayesian estimator corresponding to a hit-or-miss cost.
Therefore, as developed in [15], an estimate qA](-D)(k) =1 of

qj(o)(k) is obtained if

p(ri” (k) /q\” (k) = 0) < p(r{” (k) /¢ (k) =1).  (4)

Such a denoising scheme could be improved by exploiting
inter-scale redundancies. More precisely, we first recall that
each father wavelet coefficient at position ke = (k1 ¢), k(2,1))
has four children placed in the next finest subband at po-
sitions k that are (2]?(1,{), 2k(2,f)), (2k(1,f), 2]{7(2,{) + 1),
(Zk(l,f) + 1, 2k(27f)) or (2k(]_7f) + 1, 2k(27f) + 1). It has been
noted that very often, when a father wavelet coefficient has a
significant magnitude, its children tend also to be signficant
and carry valuable information. In other words, it could be
expected that the hidden variables q;o) present some redun-
dancies from a scale to the next one. Therefore, our con-
tribution consists in exploiting such dependencies by using

the value of the hidden variable q(-o) (k¢) of the father in the

estimation of the hidden variable of its four children q( )(k)
To this respect, Equation (4) is replaced by:

P(¢\” (k) = 0/4\%, (ke), r{") (k)
< P(q\” (k) = 1/¢{%, (ko),r{” (k). (5)

In the sequel, for the sake of clarity, the spatial indices are
dropped. The Bayes formula states that:

o« P(q °)/q](1)1) (4 (")) (]( /5°)
)

P(q](,o)/ (o) (0))
< P(a” /g )p'” /d}

91T

(6)

Therefore, an estimate q](o) =1 of q](-o) should satisfy:

P(¢\” = 0/4\)p(x\” /4! = 0)
<P@” =1/¢{0)p/d =1). (7)

After some manipulations, we obtain the following MAP es-
timator:

go={ 1 i (r§o>)TM](o>r§°>>x§j’}+l, ®)
J 0 else

where M](-D) is the definite positive matrix:

M(o) (F(n o)) (1-\5_5,0) + F;n,o))—l, (9)

and the positive threshold X;? 41 1s determined by:

J.j+1 o o n,0 .
P( 5- 1T T

(10)

This threshold can take the values X] ]H o if q]+1 =0 and,

X](D])H L if q](-+)1 =1 where

A _ g [(Faeelrg A
7,3 +1,0 (177rj,oo>|F§"’°)|1/2 "
(mmga e grtmzy o (1)
X(D) = In SLLEALE, g
JrJ+1,1 77‘11|F§"’°)|1/2

with the following notations:

11
7Tj,OO

3.2 MAP estimation of the wavelet coefficients

P(qj” =1/q;%, = 1)

. B (12)
P(q] o) = 0/gy%, =0)

> e

A MAP estimate of the signal can be obtained according
to the estimated values of q(o). Indeed, A(O) = 0, the
observation obviously reduces to noise and then s(o) =0. At

the opposite, if ¢ A(O) =1, a MAP estimator of the signal of
interest can be derlved.

§§o) = arg ml?xpsgo) (u] r](, ,q](O) 1). (13)

Since the couple of vectors (r; (o) 50))

(0)_1

corresponds to a Gaus-

sian vector when g;
Gaussian such that

its posterior distribution is also

Esi” | £}, ¢f” = 1] = Q"r}”) (14)

where
o) A 8,0 8,0 7,0)\—

Finally, we obtain a shrinkage rule that performs a tradeoff
between a linear estimation in the sense of a minimum mean
square error and a hard thresholding:
(0).(0) e A(0) _
3() :{ Q7 r;” if g =1
J 0

1
otherwise (16)
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4. ESTIMATION OF THE
HYPERPARAMETERS

The hyperparameters and € of the Bernouilli-
Gaussian priors can be estimated thanks to the method

of moments that we have already proposed in [15]. How-
ever, the computation of the thresholds Xﬁ-‘,’]—)ﬂ,o and X](-?]-)H,l
also necessitates the estimation of the transition probabilities

(o) (o)
;0o and, w7,

I\(S ,0)

. First of all, it is worth noting that:

e = o, Pl 9 =1/4\%)P(@\?y)

(0) (0) (0)

o) . (17)
= 61T + (1 _5]+1)(1_7T] 00)

Consequently, it is enough to estimate only one transition
@) " To this respect, we will first de-

probability, e.g. ;7.

(0)
Jj+1

the magnitudes of the components of r§°)

note |r( )| (resp. |r;%;|) the vector whose components are
(resp. r} +1) We
propose to compute the inter-covariance A§ °) of these mag-
nitude vectors:

o A o o
A SB[ %] -

(17 = BleS 1Bl (18)

By noting that:

E[le”| 51 = %, @ g0,
0
P(qﬁ),qﬁfl)

B[/ B(e$%, 1 /a$90 1T

(19)
we deduce that:

Al = 5o gt Ellr a1 B, 1 /4520 1"
(P(q “’%q;?l) P(@\”)P(q)))

Besides, as P(q (0),q](1)1) = P(q](-o)|q](0+)1) P(q](+)1) Equation
(20) reduces to:
A = 0 0 PaDPG” fg) -
[|P§°)|/q](°)]E[|P]((21|/q](3r)1]T
(21)

By taking into account the BG model and, after some cal-
culations, A](-D) is expressed as follows:

(20)

P(4\”)]

o o o o 0
AP = (Blx”1/q” =1~ Blx" /" = 0])
((xfoh = DBl = 1
T
(1= — &) = DBl /g = 0])

(22)
By combining this expression with Equation (17), we obtain:

A = () = e (Bl /gl = 1]
o 0 o o
Blx|/q” = 0) (Bl 1/al =11 . (23)

T
Bl 1/a) = 0])

Furthermore, rj(o) has a Gaussian distribution A/ (0, I‘(""’))

if q( ) = 0 and N(0, I‘(5 o) 4 I‘(" )) otherwise. Hence, it is
stralghtforward to show that:

; no 1/2
(5[1‘](- ’ )]b,b)

. /2 -
(2w + 1000

b,0
Ellr”l/g” = 0] =

(b,0)) /. (0) 24)
Ellr*1/q” = 1) =

As a result, it is easy to compute E[|r(b 0)|/ )

B/

| whereas

= 1] can be computed from an estimate of

$,0)

the hyperparameter I‘; . Consequently, in the expression

of A](-D) the only unknown quantity is the transition proba-

bility 7r 11, which appears as the solution of a set of linear
equations A least square approach may be adopted to es-
timate it. It must be pointed out that q( °) is not exactly
known and, in practice, it is replaced in Equation (23) by
its estimate. Therefore, the whole denoising procedure is a
recursive one from coarse to fine resolution. Indeed, at the
coarsest level J, the wavelet coefficients of the signal are esti-
mated according to the intrascale MAP procedure described
in [15] and corresponding to Equation (4). At the resolution
level J — 1, the hyperparameters are estimated and, in par-
ticular, the transition probabilities are derived from the esti-

mation of q(o)

from Equation (8) and the MAP estimate of s(le is obtained

from Equation (16). Then, the procedure is repeated at the
susbequent finer levels.

Then, the hidden variables qJ , are derived

5. EXPERIMENTAL RESULTS

Simulations were carried out on three-component images
(B = 3) of size 512 x 512 as the SPOT3 image “Tunis” and
the RGB color image “Lena”. We have artificially corrupted
these components by adding a zero-mean Gaussian multi-
variate process. In our simulations, WT based on Symmlet
of order 4 have been used. The performances are evaluated
in terms of a Signal-to-Noise Ratio (SNR) averaged over the
B components. For a fair comparison, we have also tested
up-to-date wavelet-based methods. All of them are applied
separately to each spectral component. To this purpose, we
have tested the SUREshrink method [16], a MAP estima-
tion method based on Generalized Gaussian (GG) priors [6],
the locally bivariate shrinkage method [13]. Only the latter
exploits the interscale redundancy. Besides, it is worth not-
ing that in all the considered methods, the noise variance
[I‘;”’O)]b,b is supposed to be known. The measure of perfor-
mances is the average Signal-to-Noise Ratio (SNR). Table 1
provides the resulting SNR's for a three-stage decomposition
(J = 3). It is worth noting that the intrascale version of the
multivariate BG-MAP estimation is more performant than
the other previously developed methods, especially for very
low values of the SNR. This result confirms the superiority
of such multivariate statistical approach. Furthermore, it
is clear that the interscale extension yields improvements of
the SNR up to 0.3 dB w.r.t. to the intrascale BG-MAP. Bet-
ter performances are obtained at deeper decomposition level
as indicated in Table 2. For “Tunis”, improvements rang-
ing from 0.2dB to 0.3 dB are achieved w.r.t. the intrascale
version, and the interscale BG-MAP clearly ouperforms the
Bivariate method (about 1dB gain).

Finally, Figure 1 shows a cropped version of denoised im-
ages corresponding to the first channel XS1 of “Tunis”. Both
bivariate shrinkage and interscale BG-MAP attenuates the
granular effect of the noise but textures look less blurry with
the latter one than with former one.
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