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ABSTRACT

We present a novel method for shape modeling using an ex-
tended class of semiparametric skew-symmetric (SSS) distri-
butions. Given several realizations of a simple shape, the
proposed method models it as a joint distribution of angle
and distance from the centroid of all points on the boundary.
The model, called “Semiparametric Skew-Symmetric Shape
Model” (SSSM), is capable of capturing inherent variability
of shapes provided the realization contours remain within
a certain neighborhood range around a “mean” with high
probability. In this paper, we will discuss SSSM learning,
classification through SSSM and sampling shapes from the
learned models.

1. INTRODUCTION

The goal of shape modeling is to find mathematical repre-
sentations that capture the intrinsic morphologies of various
shapes and simultaneously account for their variability. In
recent years, various methods have been proposed to solve
the problem including rigid models [3]. Although rigid mod-
els have been popular for many applications, it is their inabil-
ity to reflect the inherent variability of shapes, e.g., anatom-
ical shapes, that has prompted researchers to look for other
more flexible approaches [7, 4, 5, 9, 6].

In contrast to these approaches, we view the variability
of shape as one that allows realization contours to remain
within a certain neighborhood range around a mean. This in
turn suggests that for any given angle, a probability density
function may be found to capture the corresponding poten-
tial excursion of the curves at that angle. We specifically
exploit a class of semiparametric skew-symmetric distribu-
tions [8] because of potential skewness of data which may
arise in practical problems. The method works equally well
for non-skewed data since the distribution class includes the
non-skewed distributions.

The paper is organized as follows. We start with a prob-
lem statement section given next. In Section 3, we describe
the probabilistic model we wish to develop. Section 4 and
5 respectively describe classification using SSSM and shape
sampling. In Section 6, we provide illustrating examples and
finally give some conclusions in Section 7.

2. PROBLEM STATEMENT

Any shape Si can be represented by a curve CSi(t) in the
parameterized form given below:

CSi : I ⊆ R
+ → R× [0,π] (1)
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Figure 1: (a) Heart shape (b) Some realizations superim-
posed on each other (c) Sampled superimposed realizations
(d) Constituent realizations.

and for convenience and clarity, we take I ⊂ N, which
corresponds to a sampled curve. Given a sam-
pled curve, {CSi

j} j=1,...,N , we are asked to provide
a probabilistic model for Si in terms of its radius
(from the centroid) and angle around. Alternatively,
we may view CSi(t) as a parametric representation

(x(t),y(t)) or (
√

x2(t)+ y2(t), arctan[y(t)/x(t)]).
To better illustrate the overall approach, we discuss a

specific template of a heart. Given several realizations of a
heart, we are asked to learn and to subsequently capture all
objects having similar shape realizations. By learning, we
mean to compute from training data, the relevant parame-
ters of the underlying distribution of the shape. We assume
that, after normalization, the boundaries of realizations can
deviate from the mean shape only by some multiple of stan-
dard deviation σ and lie within a tubular region shown in
Fig. 1(c) with probability close to 1. Combining all such
realizations and then sampling them is tantamount to as-
sembling a cloud of points in the neighborhood of the mean
boundary as shown in Fig. 1(c). The points in the cloud may
be assumed“i.i.d” or at most may be modeled as a first order
Markov process. The boundary of any shape realization will
be a subset of points within a tubular cloud, which is inter-
preted as a permissible shape space, as shown in Fig. 1(c).

Si∼{(

√

x2 + y2
i
+ni,θi +nθi)} (2)

Based on these realizations, the points in the cloud at a given
angle may be distributed around the template boundary ac-
cording to a skewed distribution p(r|θ). Note that the non-
skewed densities are a particular case of skewed representa-
tion.

365



p(θ) 

θ0 π/2 π 

P
1
 

P
0
 

p(θ) 

θ0 π/2 π 

P
0
 

P
1
 

(a) (b)

Figure 2: Prior distribution (a) Piecewise uniform (b) Piece-
wise tapered.

3. SHAPE ANALYSIS

In this paper, we will be investigating a class of closed sim-
ple shapes similar to those given in Fig. 4. For convenience,
we adopt a modified polar coordinate system (r,θ), where
θ ∈ [0,π). In addition, we choose to translate the origin to
shape centroid and scale the shape to a pre-specified area.
We begin with sampling a shape at angles Θ ∈ [0,π) cho-
sen randomly according to a prior distribution p(θ). For a
given fixed Θ = θi, we identify all samples lying within an
ε-neighborhood of θi. The closure of the shape allows us to
associate two clusters of samples on either side of the cen-
troid at θi, with a relative phase difference of π. The two
clusters are distributed according to a bimodal conditional
distribution (for fixed θi), p(r|θi). Slicing the image at a
specified angle and combining the two clusters in this way,
is advantageous since we need to learn distributions only for
half the original angle space and that it also extends readily
to complex multi-loop shapes.

We propose the following model to represent such a class
of conditional distributions:

p(r|θ) = 2ω f

(

r−ξ (θ)

σ(θ)

)

H

(

PK

(

r−ξ (θ)

σ(θ)

))

, (3)

where f is any symmetric pdf and H is any cumulative dis-
tribution function of a continuous random variable that is
symmetric around zero and PK is a K-order polynomial. ω is
a parameter that makes p(r|θ) a valid density and depends
on (ξ ,σ) and the parameters of polynomial PK . One can
show that such a formulation affords much flexibility such as
multimodality, skewness, symmetry, etc. [1].

Using a data sample of sufficient size, we may proceed
to learn the density by standard techniques, for instance,
maximization of likelihood function.

3.1 Prior Distribution

Because of the random nature of R and Θ, a complete
shape representation requires assigning a prior on Θ, whose
choice is influenced by the presence of shape singularities,
for instance a cusp shown in Fig. 1(a). Provided that such
events are present, their nonuniform occurrence throughout,
suggests a piecewise uniform or piecewise uniform tapered
(PUT) distribution for the prior as shown in Fig. 2.

3.2 Overall Shape Model

Using the prior, p(θ), together with a conditional density for
r, p(r|θ), we can construct the overall density for a shape.
Based on m angle samples, θ = (θ1, . . . ,θm)T , drawn according
to the prior, the overall shape has conditional likelihood:

p(Z1, . . . ,Zn|θ) =
m

∏
i=1

n

∏
j=1

Z j∈N
θi
ε

p(r j|θi)p(θ̃ j), (4)

where {Z j} j=1,...,n is the point with radius r j and angle θ̃ j,

Nθi
ε is the ε-neighborhood of θ = θi and Z j = (r j, θ̃ j) ∈ Nθi

ε .

(a) (b)

Figure 3: Illustration of using modes as boundary points: (a)
Mickey face shape; (b) Bimodal distributions learned with 100
angles.

3.2.1 Template Learning

We define a template as the best realization of the ideal shape
S in MLE sense. In other words, the template, RS template

maximizes the conditional likelihood function (4) over a set
of all possible realizations {RSi ; i = 1, . . . , l}:

RS template
= argmax

RS

p(Z1, . . . ,Zn|θ) |
RS

. (5)

This is equivalent to using modes of the bimodal distribution
as the most likely representative for the boundary points.
Hence, corresponding to each angle, we estimate the modes
of the posterior, which will then be assumed to lie on the
template boundary. In the limiting case, where the number
of angle samples goes to infinity, the set of modes will con-
stitute the closed contour of the learned template. This is
illustrated for Mickey face in Fig. 3.

3.3 Prior performance assessment

In order to quantify the goodness of a learned template and
the quality of a prior selection, we evaluate the cumulative
deviation between an ideal shape and learned template with
specific priors.

At a given angle, θ , the deviation of the ideal boundary
points r1(θ) and r2(θ) from the estimated ones is given by:

dri(θ) = ri(θ)− r̂i(θ). (6)

As a performance measure, we may use l2-norm of the
difference between two shapes. Discretizing angle space
and considering some ε-neighborhood of θ , the departure
of learned template from the ideal shape is given by:

D =

√

∑
θ∈[0,π]

∑
θi∈Nθ

ε

(

dr2
1,θi

+dr2
2,θi

)

, (7)

where Nθ
ε is some ε-neighborhood around θ and dr j,θi is the

deviation for the j-th mode at a given angle θi ∈ Nθ
ε .

4. CLASSIFICATION OF SHAPES

With the probabilistic model (4) in hand, we may now em-
ploy maximum likelihood classifier. Suppose that we have
learned models pS for l shapes {Si; i = 1, . . . , l}. Given a test
shape, S0, we compute l likelihoods {pSi(si|S0); i = 1, . . . , l}
and assign S0 to the class that achieves the largest likeli-
hood.

5. SAMPLING FROM MODELS

Shapes can be sampled from the distribution given by (4).
In order to sample a cloud of shapes, we need to learn the
conditional distributions, p(r|θ), for m given angles Θ = θ
drawn according to a PUT distribution. Once the learning
phase is complete, we proceed to generate n >> m additional
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angle samples from the same PUT distribution. For each
angle sample, the best approximation θ is selected and finally
r is generated according to p(r|θ).

For sampling closed shapes from the model, we need to
incorporate a first order Markov process, which tries to en-
sure a smooth boundary. Clearly, each value r assumed by
R depends on its previous value r0 along with the angle Θ.

p(r|θ ,r0) = p(r|θ)p(r0|r)/p(r0) (8)

= p(r|θ)p(r|r0)/p(r), (9)

where p(r|θ) is given by (3). Hence, the modified shape
model is given by:

p(Z1, . . . ,Zn|θ) =
m

∏
i=1

n

∏
j=1

Z j∈N
θi
ε

p(r j|θi,r j0)p(θ̃ j). (10)

p(r|r0) may be assumed to be Gaussian for each mode, with
mean r0. Its variance σ0 may be treated as a smoothness pa-
rameter. However, Laplace distribution is more appropriate.
Furthermore, a product of Laplace distribution and bimodal
SSS distribution is yet a better choice for p(r0|r) [2].

In order to ensure closure of a shape, a current boundary
point must be dependent on the starting point. This depen-
dence is, however, weak, initially, but as a curve is traversed,
the dependence gradually becomes stronger. Again Gaussian
distribution is a good choice [2].

6. EXPERIMENTAL RESULTS

In this section, we present some results that demonstrate
generality and effectiveness of the proposed method.

6.1 Model Learning

Using different priors, we learn models for three shapes, iden-
tified as star, brain, and heart, which are acquired from real
images (Fig. 4). We used 20 angle samples in each case ex-
cept for Star shape, which was learned with 10 samples. A
third order polynomial was employed in (3) with skewed nor-
mal distribution. Learned templates are given in Fig. 5 and
Fig. 6. Templates learned with 100 samples are shown in
Fig. 7. Performance measures are tabulated in Table 1. It
is clear, both visually and quantitatively by the performance
measures, that the PUT prior gives better results than uni-
form prior.

Table 1: Performance measure D for case studies.

Case Study Prior for angle Θ D (×103)
Star Uniform 2.1

PUT 1.6
100 Samples 1.6

Brain Uniform 0.5
PUT 0.4

100 Samples 0.4
Heart Uniform 0.205

PUT 0.211
100 Samples 0.198

6.2 Classification

In this section, we present classification results that were ob-
tained for a database of 143 car and 68 banana shapes, some
of which are shown in Fig. 10 and Fig. 11 respectively. Tem-
plates learned from SSSM for the two shapes are presented

in Fig. 10 and Fig. 11. Given an observation S0, we test the
following two hypotheses:

H0 : S0 is a car. (11)

H1 : S0 is a banana.

Likelihoods pScar and pSbanana
for 143 car and 68 ba-

nana shape realizations were computed. The likelihoods were
then used to classify with 97.6% success rate.

6.3 Sampling from Model

A cloud of points simulated for Mickey face is shown in Fig. 8.
Angle sample size was 100 while the number of points was
20000. Some sampled shapes are given in Fig. 9.

7. CONCLUSIONS

In this paper, we presented semiparametric model for shape
representation, whose statistical nature accounts for varia-
tions present in different realizations. The method is suffi-
ciently general to capture possible skewness that might ap-
pear in data. Computer simulations demonstrate that semi-
parametric skew-symmetric template learning is quite effec-
tive and robust for capturing variability inherent to shapes.
It can capture shape singularities to some extent and may be
applied to complex multi-loop templates using higher order
polynomial PK in (3). We also presented classification results
and a way to sample shapes from the model. The method
can also be extended to 3-D shapes, which we are currently
investigating.
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Figure 4: (a) Actual shapes: star, brain, and heart; (b) Cor-
responding realizations.

(a) (b) (c)

Figure 5: Template learned using uniform prior: (a) Star;
(b) Brain; (c) Heart.

(a) (b) (c)

Figure 6: Template learned using piecewise tapered uniform
prior: (a) Star; (b) Brain; (c) Heart.

(a) (b) (c)

Figure 7: Template learned with 100 angle samples: (a) Star;
(b) Brain; (c) Heart.

(a) (b)

Figure 8: Shape simulation of Mickey face according to Eq.
4: (a) Realizations; (b) Simulated realizations.

(a) (b) (c) (d)

Figure 9: Star shapes simulated according to Eq. 10: (a)
Without Markov chain; (b) σ0 = 1; (c) σ0 = 0.09; (d) σ0 =
0.04.

(a)

(b)

(c)

Figure 10: Car Shape: (a) Some car images from differ-
ent viewing angles; (b) Corresponding outer contours; (c)
Learned template.

(a)

(b)

(c)

Figure 11: Banana Shape: (a) Some sample bananas; (b)
Corresponding outer contours; (c) Learned template.
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