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ABSTRACT
Quantization of sinusoidal model parameters is of impor-
tance in e.g. low-rate audio coding. In this work we intro-
duce entropy constrained unrestricted spherical quantization,
where amplitude, phase and frequency are quantized depen-
dently. We derive a high-rate approximation of the average�

2-distortion and use this to analytically derive formulas for
optimal spherical scalar quantizers. These quantizers mini-
mize the average distortion, while the corresponding quanti-
zation indices satisfy an entropy constraint. The quantizers
turn out to be flexible and of low complexity, in the sense that
they can be determined for varying entropy constraints with-
out any iterative retraining procedures. As a consequence
of minimizing the

�
2-norm of the (quantization) error signal,

the quantizers depend on both the shape and length of the
analysis/synthesis window.

1. INTRODUCTION

Parametric coding has proved to be very effective for repre-
senting audio signals at low bit rates [1, 2, 3]. A typical para-
metric coder uses a decomposition of an audio signal into
three components: a sinusoidal component, a noise compo-
nent and a transient component, which are coded by sepa-
rate subcoders. The sinusoidal component, represented by
the parameters amplitude, phase and frequency, is perceptu-
ally the most important of the three, and in typical low-rate
audio coders the main part of the bit budget is used for this
component [3]. Often, the bit budget available for encoding
sinusoids is given a priori, e.g. by a rate-distortion control
algorithm which distributes the total bit rate over the sub-
coders. For this reason it is desirable to have simple and
flexible quantizers which can adapt to changing bit rate re-
quirements without any sort of retraining or iterations. Find-
ing efficient quantizers for the sinusoidal component and its
corresponding parameters is therefore critical.

In [4], entropy constrained unrestricted polar quantiza-
tion (ECUPQ) is introduced, in which only amplitude and
phase parameters are quantized. The term unrestricted refers
to the fact that amplitude and phase are quantized depen-
dently, that is, phase quantization depends on the input am-
plitude. The derivations in the cited paper are done under a
high rate assumption, i.e. a very large number of quantiza-
tion cells. Furthermore this assumption also implies that the
probability density functions of the input variables are ap-
proximately constant in each quantization cell. The resulting
quantizers turn out to be flexible and of low complexity. A
shortcoming of this work, however, is that it does not con-
sider quantization of frequency parameters.
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In this paper ECUPQ will be generalized to include
frequency quantization. We denote this extended scheme
by entropy constrained unrestricted spherical quantization
(ECUSQ). Analogously with ECUPQ, amplitude, phase and
frequency are quantized dependently. Using high-rate as-
sumptions, we derive optimal amplitude, phase and fre-
quency quantizers, which minimize the distortion, while sat-
isfying an entropy constraint. Furthermore the rate distri-
bution between amplitude, phase and frequency will be dis-
cussed. Note that since we also consider frequency quantiza-
tion and hence consider multiple samples of a sinusoid, the
distortion measure we use will be dependent on the frame
length and analysis/synthesis window.

The remainder of this paper is organized as follows. In
Section 2.1 we will derive a high-rate expression for the av-
erage distortion for a single sinusoid. In Section 2.2 we min-
imize this expression under an entropy constraint, resulting
in the optimal quantizers and a distortion-rate relation. The
multiple sinusoid case will be considered in Section 2.3. In
Section 3, the found theoretical distortion-rate curve will be
compared to a practically obtained curve, and the distribu-
tion of the rate between amplitude phase and frequency will
be discussed. Finally, some conclusive remarks are given in
Section 4.

2. ENTROPY CONSTRAINED UNRESTRICTED
SPHERICAL QUANTIZATION

2.1 High-rate expression for the average distortion - sin-
gle sinusoid

In this section we will derive a high-rate approximation for
the average distortion concerning a single sinusoid. Let the
original and quantized spherical representation of a complex
sinusoid be denoted by ae j � νn � φ � and ãe j � ν̃n � φ̃ � respectively,
for n � n0 �	�
�	�	� n0 � N � 1, where a is amplitude, φ is phase,
ν is frequency, n0 �� , and N is the frame length. Further-
more, let ε � n � denote the difference between the original and
quantized sinusoid, and let w be the window defining the sig-
nal segment. The average distortion corresponding to the

�
2-

distortion measure is then given by

D � E � d � a � φ � ν � ã � φ̃ � ν̃ �
� � (1)
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where E ��� � denotes expectation, and

d � a � φ � ν � ã � φ̃ � ν̃ �

�
n0 � N � 1

∑
n � n0

�
w � n � ε � n � � 2

�
n0 � N � 1

∑
n � n0

���w � n � ae j � νn � φ � � w � n � ãe j � ν̃n � φ̃ � ��� 2
��� w � 2 � a2 � ã2 � � 2aã

n0 � N � 1

∑
n � n0

w � n � 2 cos � � ν � ν̃ � n � φ � φ̃ �
(2)

denotes the
�

2-error, and � w � 2 � ∑n0 � N � 1
n � n0

w � n � 2 the 2-norm
of the window w. To derive a high-rate approximation of the
average distortion (1), we first determine the

�
2-distortion in

a quantization cell, which can be found by averaging over
the corresponding amplitude, phase and frequency quantiza-
tion intervals Xa, Xφ and Xν with lengths � a, � φ and � ν ,
respectively:

d̄ � ã � φ̃ � ν̃ � � a � � φ � � ν �

�
	

Xa

	
Xφ

	
Xν

fA 
Φ 
 F � a � φ � ν � d � a � φ � ν � ã � φ̃ � ν̃ � dνdφda	
Xa

	
Xφ

	
Xν

fA 
Φ 
 F � a � φ � ν � dνdφda � (3)

Under high-rate assumptions, the joint probability density
function fA 
Φ 
 F � a � φ � ν � is approximately constant over a
quantization cell. Consequently, the quantization points are
located in the center of the quantization intervals. Using
these assumptions in (3) and approximating the sines with
their Taylor expansions, we finally obtain

d̄ � ã � � a � � φ � � ν ��� � w � 2

12

 � a2 � ã2 ��� φ 2 � σ2 � ν2 ���
(4)

where σ 2 � 1�
w
� 2 ∑n0 � N � 1

n � n0
w � n � 2n2.

A high-rate approximation for (1) can now be found by
averaging the distortion (4) over all quantization cells. Let
the amplitude, phase and frequency quantization indices cor-
responding to a quantization cell be denoted as ia, iφ and iν ,
respectively, and let Ia, Iφ and Iν denote their corresponding
alphabets. We obtain

D � ∑
ia � Ia

∑
iφ � Iφ

∑
iν � Iν

pIa 
 Iφ 
 Iν � ia � iφ � iν � d̄ � ã � � a � � φ � � ν � ia 
 iφ 
 iν
� � w � 2

12 ����� fA 
Φ 
 F � a � φ � ν �  g � 2
A � a � φ � ν �

� a2 � g � 2
Φ � a � φ � ν � � σ 2g

� 2
F � a � φ � ν �	��� dνdφda (5)

where pIa 
 Iφ 
 Iν � ia � iφ � iν � is the probability of the cell corre-

sponding to the quantization indices ia, iφ and iν . In this
derivation we used high-rate assumptions and hence sub-
stituted sums by integrals and quantization step sizes by
so-called quantization point density functions [5, 6], which
when integrated over a region S gives the total number of
quantization levels within S. In the case of one-dimensional

quantizers, this means that the quantizer step sizes are just
given by the reciprocal values of the point densities, that is,
g � ∆ � 1. In high-rate theory, quantizers are described by
these density functions, without exactly specifying the lo-
cation of the quantization points. Note that since we con-
sider unrestricted quantization, the quantization point density
functions depend on all three parameters.

2.2 Entropy-constrained minimization of the average
distortion - single sinusoid

In this section we will determine the quantization point den-
sity functions that minimize the average distortion (5), while
satisfying the entropy constraint H � Ia � Iφ � Iν � � Ht , where Ht

is the given total target entropy, and H � Ia � Iφ � Iν � is the joint
entropy of amplitude, phase and frequency quantization in-
dices. The joint entropy H � Ia � Iφ � Iν � can be approximated,
under high-rate assumptions, by

H � Ia � Iφ � Iν ��� h � A � Φ � F �
� ����� fA 
Φ 
 F � a � φ � ν � log2 � gA � a � φ � ν �
� dνdφda

� ����� fA 
Φ 
 F � a � φ � ν � log2 � gΦ � a � φ � ν �
� dνdφda

� ����� fA 
Φ 
 F � a � φ � ν � log2 � gF � a � φ � ν �
� dνdφda �
where h � A � Φ � F � is the joint differential entropy of ampli-
tude, phase and frequency, which is independent of the quan-
tization point density functions. Using this approximation,
we rewrite the entropy constraint as H̃ � Ia � Iφ � Iν � � H̃t , where
we subtracted h � A � Φ � F � from both sides of the original con-
straint equality. We now have a constrained minimization
problem that can be solved using the method of Lagrange
multipliers, turning it into an unconstrained problem. The
criterion to minimize then is

η � D � λ � ����� fA 
Φ 
 F � a � φ � ν � log2 � gA � a � φ � ν �
� dνdφda

� ����� fA 
Φ 
 F � a � φ � ν � log2 � gΦ � a � φ � ν �	� dνdφda

� ����� fA 
Φ 
 F � a � φ � ν � log2 � gF � a � φ � ν �	� dνdφda � �
where λ is the Lagrange multiplier, and D is given by
(5). Evaluating the Euler-Lagrange equations with respect to
gA � a � φ � ν � , gΦ � a � φ � ν � and gF � a � φ � ν � individually, we ob-
tain

gA � a � φ � ν � � gA ��� � w � 2

6λ log2 � e � �
1
2

� (6)

gΦ � a � φ � ν � � gΦ � a � � � � w � 2a2

6λ log2 � e � �
1
2

� (7)

gF � a � φ � ν � � gF � a � ��� σ2 � w � 2a2

6λ log2 � e � �
1
2

� (8)

Substituting these three expressions into the entropy con-
straint, we find the optimal value of the Lagrange multiplier:

λ � � w � 22
� 2

3 � H̃t
� 2b � A � � log2 � σ � �

6log2 � e � �
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where H̃t � Ht � h � A � Φ � F � and b � A � � 	
fA � a � log2 � a � da

are introduced for notational simplicity. Substituting this re-
sult back in (6), (7) and (8), we find the optimal high-rate
ECUSQ quantizers for the case of a single sinusoid and the�

2-distortion measure:

gA � 2
1
3 � H̃t

� 2b � A � � log2 � σ � � � (9)

gΦ � a � � a2
1
3 � H̃t

� 2b � A � � log2 � σ � � � (10)

gF � a � � σa2
1
3 � H̃t

� 2b � A � � log2 � σ � � � (11)

We see that the optimal amplitude quantizer is uniform, and
both the optimal phase and frequency quantizer are uni-
form in phase and frequency and depend linearly on ampli-
tude. Furthermore, unlike the quantizers derived in [4], the
ECUSQ quantizers in (9)-(11) depend on the signal frame
length N and the analysis/synthesis window w (through σ ).

The minimal average distortion for ECUSQ can now be
found by substituting (9), (10) and (11) in (5):

DECUSQ � � w � 22
� 2

3 � H̃t
� 2b � A � � log2 � σ � �
4 � (12)

It is not difficult to show that if w is an evenly-symmetric
window, the distortion (12) is minimal for n0 � � � N � 1 �

2 . We
then have σ 2 � 1

12 � N2 � 1 � . We assume this to be the case in
the remainder of this work.

2.3 Multiple sinusoids

In the case of L independent sinusoids, the total average dis-
tortion is determined by Dtot � 1

L ∑L
l � 1 Dl � D. Since the

expression for the distortion of a single sinusoid, as defined
in (1), is a squared-error distortion measure, each sinusoid
gives the same contribution to the total distortion. The en-
tropy constraint is given by 1

L ∑L
l � 1 Hl � Ia � Iφ � Iν � � Ht , which

simplifies to H � Ia � Iφ � Iν � � Ht , since each sinusoid also gives
the same contribution to the total entropy of quantization in-
dices. We see that we end up with exactly the same con-
strained optimization problem as for a single sinusoid, which
means that the quantizers (9), (10) and (11) are also optimal
for multiple sinusoids for this distortion measure. In [4] a
weighted distortion measure is used, such that each sinusoid
is weighted differently, depending on its perceptual impor-
tance. It is straight-forward to make this extension here as
well; in this case the optimal quantizers will depend on the
weights of the sinusoids.

3. EXPERIMENTAL RESULTS

In this section the theoretical rate-distortion function derived
in (12) for ECUSQ will be compared to a practically ob-
tained rate-distortion curve. Secondly, the distribution of
bits between amplitude, phase and frequency in the optimal
ECUSQ quantizer, and its dependency on the frame length
will be discussed.

Let X , Y and Z denote three independent Gaussian vari-
ables, with zero mean and unit variance. The corresponding
spherical variables amplitude, phase and frequency are then
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Figure 1: Theoretical versus practical distortion-rate perfor-
mance for N � 1024.

defined by respectively

A ��� X2 � Y 2 � Z2 �
Φ � arctan � Y

X
� �

F � arctan � Z�
X2 � Y2

� �

Using the rules for computing probability density functions
of a transformation of random variables, it can be shown that
the amplitude A has the Maxwell density M � 1 � , the phase Φ
has the uniform density U � 0 � 2π � and the frequency F has a
probability density function given by fF � ν � � sin � ν �

2 for 0 �
ν � π . It can be verified that A, Φ and F are independent.

Using these distributions, a large number, M, of triplets�
a � φ � ν � are generated, and subsequently quantized with the

quantizers derived in (9), (10) and (11) for a given target en-
tropy. Using (2), the quantization distortion for each triplet
is determined, and averaged over all triplets. Computing the
entropy of the M quantized triplets then gives us a rate distor-
tion pair. Repeating this procedure for several different tar-
get entropies Ht , we obtain a practical rate distortion curve
as plotted in figure 1, where we used M � 10000. In the
same figure the theoretical rate distortion curve given by (12)
is plotted, where we used a rectangular window with length
N � 1024. It can clearly be seen that the curves converge
towards each other, which verifies that the expression (12)
for the average distortion is indeed a good approximation at
high rates. At an entropy of 30 bits the difference between
the curves is only 0.1 dB, and for higher rates this difference
decreases. For low rates it is clear that the approximation
(12) is not valid anymore.

The distribution of the rate between amplitude, phase and
frequency in the optimal ECUSQ quantizer can be found by
determining the entropies of the quantization indices H � Ia � ,
H � Iφ

�
Ia � and H � Iν

�
Ia � . Using high-rate assumptions we ob-
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tain

H � Ia � � � ∑
ia � Ia

pIa � ia � log2 � pIa � ia �	�
� h � A � � log2 � gA � �

H � Iφ
�
Ia � � � ∑

ia � Ia
∑

iφ � Iφ

pIa 
 Iφ � ia � iφ � log2 � pIφ � Ia � iφ
�
ia � �

� h � Φ �A � � � fA � a � log2 � gΦ � a �
� da �
and in the same way

H � Iν
�
Ia ��� h � F �A � � � fA � a � log2 � gF � a �
� da �

where h � A � , h � Φ �A � and h � F �A � are differential entropies.
Substituting the optimal quantizers (9), (10) and (11) into
these equations, and assuming the same distributions as ear-
lier in this section (so A, Φ and F are independent) we finally
obtain

H � Ia � � 1
3
� H � log2 � σ � � 2 � 27 � �

H � Iφ
�
Ia � � 1

3
� H � log2 � σ � � 2 � 95 � �

H � Iν
�
Ia � � 1

3
� H � 2log2 � σ � � 0 � 68 � �

Here we used that h � A � � 1 � 437, h � Φ �A � � h � Φ � � 2 � 651,
h � F �A � � h � F � � 1 � 443 and b � A � � 0 � 526. For a fixed tar-
get rate Ht , these entropies only depend on the frame length
N. In Figure 2 the entropies of the quantization indices are
plotted as a function of N for Ht � 15. We see that phase
will always be assigned 1 � 74 bits more than amplitude. Fur-
thermore, if the frame length N is increased, more bits will be
assigned to frequency, and hence less to amplitude and phase.
This can be expected since for increasing frame length, the
frequency quantization error grows more rapidly than the
amplitude and phase quantization error. Consequently, more
bits will have to be assigned to the frequency quantizer in or-
der to keep the distortion minimal. Such a frame length de-
pendent quantization is important in coding schemes where
variable segment length analysis is used, see e.g. [7, 8].

4. CONCLUSIVE REMARKS

In this work we analytically derived optimal entropy-
constrained unrestricted spherical quantizers, for quantiza-
tion of amplitude, phase and frequency parameters. These
derivations were done under a high-rate assumption which
increases the simplicity of the derivations significantly. The
quantizers turned out to be flexible and of low complexity
in the sense that they can adapt easily to changing bit rate
requirements without any retraining or iterative procedures.
As a consequence of minimizing the

�
2-norm of the (quanti-

zation) error signal, the quantizers depend on both the shape
and length of the analysis/synthesis window.
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Figure 2: Entropies of quantization indices as a function of
frame length for Ht � 15.
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