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ABSTRACT

In this paper, a data embedding technique for speech sig-
nals, exploiting the masking property of the human auditory
system, is presented. The signal in the frequency domain
is partitioned into subbands. The data embedding parame-
ters of each subband are computed from the auditory mask-
ing threshold function and a channel noise estimate. Data
embedding is performed by modifying the Discrete Hartley
Transform (DHT) coefficients according to the principles of
the Scalar Costa Scheme (SCS). A maximum likelihood de-
tector is employed in the decoder for embedded-data pres-
ence detection and data-embedding quantization-step estima-
tion. We demonstrate the proposed data embedding tech-
nique by simulation of data embedding in a speech signal
transmitted over a telephone line. The demonstrated system
achieves transparent data-embedding at the rate of 300 in-
formation bits/second with a bit-error-rate of approximately
10~. The proposed technique outperforms spread spectrum
(SS) based data-embedding techniques for speech signals.

1. INTRODUCTION

A data embedding (also known as data hiding or digital wa-
termarking) system should fulfill the following requirements.
It should embed information fransparently, meaning that the
quality of the host signal is not degraded perceptually by the
presence of embedded data. It should be robust, meaning that
the embedded data could be decoded from the watermarked
signal, even if it is distorted or attacked. The data embedding
rate is also of importance in some applications.

Eggers and Girod [4], motivated by Costa’s work [3],
proposed a practical data embedding scheme. The scheme
uses uniform scalar quantization in the data embedding pro-
cess. The capacity of SCS is typically higher then other pro-
posed schemes (for example, schemes based on SS [2][10]
or quantization index modulation (QIM) [1] ). However, the
general method in [4] does not take into consideration human
perception models, such as human visual or human auditory
models.

Many SS-based data embedding techniques do use a per-
ceptual model in the embedding process [10]. However, the
disadvantage of these techniques is their low embedded data
rate, which is a consequence of the SS principles.

In this paper we combine the general principles of
SCS with an auditory perceptual model, obtaining a data-
embedding system for speech signals.

The paper is organized as follows. In section 2 we re-
view the main principles of SCS. In sections 3,4 we present
the data embedding encoder and decoder structure, respec-
tively. We describe simulation results in section 5, followed
by conclusions in section 6.

2. SCS PRINCIPLES

A general model for data communication by data embed-
ding can be described as follows: The binary representation
of a message m, denoted by a sequence b, is encoded into
a coded sequence d (by a forward error-correction channel-
coder such as block codes or convolutional codes). The en-
coder embeds the coded data d into the host signal x pro-
ducing the transmitted signal s. A deliberate or an undelib-
erate attack might modify the signal s into a distorted signal
r and impair data transmission. The decoder aims to detect
the embedded data from the received signal r. In blind data-
embedding systems, the host signal x is not available at the
decoder.

In this paper x, s and r denote the representation vectors
of the original, transmitted, and received signal, respectively.
Lower case xy, s, and r, refer to their respective n’th element.
Representation vector elements could be time samples, fre-
quency coefficients or any other representation elements of
the corresponding signal.

2.1 Data embedding

According to SCS, the transmitted signal elements are addi-
tively composed of the host signal and the watermark signal,
i.e., s, = x, +wy,. The watermark signal elements are given
by w, = aq,, where « is a scale factor and g, is the host
signal element quantized according to the data d,:

qn :QA{xn_A(Cz1+kn>}_ <xn_A(czq+kn>> . (1)

In this paper we assume a binary SCS, i.e., a SCS with an al-
phabet size of D =2, that is, d, € D = {0, 1}. Oa{-} denotes
scalar uniform quantization with step-size A, and &, € [0,1)
denote the elements of a cryptographically secure pseudo-
random sequence k. For simplicity, we assume in the fol-
lowing that the sequence Kk is not in use, i.e. k, = 0. The
noise elements are given by v, = r, —s,, and the watermark-
to-noise ratio (WNR) is defined as:

2
WNR = 10log;, Eﬂ [dB], )

where 62,02 are the variances of the watermark and noise
signals elements, respectively. SCS embedding depends on
two parameters: the quantizer step-size A and the scale factor
a. For a given watermark power 62 , these two parameters
are related via:

a’?
ou =15 3)
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Eggers and Girod found experimentally an approximate an-
alytical expression for the optimum value of @, in the sense
of maximizing the capacity of SCS, which is [4]:

_ o;
OsCS,approx = m~ “4)

(3) and (4) lead to Agcs approx = V/12(02 +2.7167). In the
case of @ = 1, SCS and QIM scheme [1] have the same em-
bedding rule.

2.2 Data extraction

Data detection is applied to a signal y, whose elements are
computed from the received signal elements 7, by:

yn:QA{rn}_rn- (%)

For binary SCS, |y,| < A/2, and for proper detection, y,
should be close to zero if d,, = 0 was embedded, and close
to £A/2 if d, = 1. A hard decoding rule assigns:

A 0
aw={
Soft-input decoding algorithms, e.g., a Viterbi decoder like
the one used for decoding convolutional codes, can be used

here too to decode the most likely transmitted message 7z,
from the signal y.

a| < D/4
SNV ®

3. DATA-EMBEDDING ENCODER

In this section, the data-embedding encoder structure is ex-
plained. The proposed encoder performs data embedding in
the frequency domain, in separate subbands, by utilizing a
masking threshold function (MTF).

3.1 Computation of subband masking thresholds

The MTF is an estimate of the masking threshold at each
spectral location. It determines the maximum allowed dis-
tortion in each band by the embedded watermark, so as to
keep transparency to the human listener. Under the constraint
of transparent embedding, the proper utilization of the MTF
will result in the maximal possible WNR.

The computation of the MTF is based on MPEG’s
psycho-acoustic model [6]. The standard supports several
common sampling frequencies of audio signals. Some mod-
ifications in the masking model implementation should be
made in the case of speech signals sampled at SKHz.

The speech signal, x, is divided into non-overlapping
frames of length N. The I-th frame is denoted by x/ with ele-
ments {xﬁ, =Xintp; 0<p<N—1}. The MTF, {S;; 0<
k < N/2}, with k denoting a discrete frequency index, is cal-
culated for each frame. The positive frequency band is di-
vided into M equal width subbands (M < N/2). The sub-
band masking threshold (SMT) in each subband is set to the
minimum of the MTF value in that subband:

Smin,m = min Sks

m=1,2,....M 7
kem’th subband

3.2 Data embedding domain

For each type of a host signal there is a need to decide on
the appropriate embedding domain. The use of a frequency
domain auditory masking model naturally leads to the choice
of the frequency domain representation of a signal as the em-
bedding domain. In other words, the frequency domain co-
efficients of the host signal are modified according to (1).
For reasons explained below, we use the DHT coeffi-
cients for data embedding. The DHT, X/, of the signal frame

x/, is defined by [9]:

X’—lle’cas<2” k> k=0,....N—1, (8)

where cas(x) £ cos(x) +sin(x). As for the DFT, the trans-
form elements are periodic in k& with period N. We prefer the
DHT over other common frequency domain representations,
such as the discrete Fourier transform (DFT) or the discrete
cosine transform (DCT).

The reason for preferring the DHT over the DFT is be-
cause the latter is a complex transform, while the DHT is a
real one, and there are fast algorithms for the computation of
the DHT [9], similar to the those used for the computation of
the DFT.

The DFT is commonly used for computing the MTF [6].
Yet, the need for complex arithmetic can be completely elim-
inated by using the direct relation between the DFT and DHT,
given by:

Re{F;} = % Xv_i+X]; Im{F} = % Xv_k—Xi], (9

where X and F; denote the DHT and DFT of a signal x, re-
spectively. Therefore, in the proposed scheme the DHT is
calculated to obtain a representation of the signal for data
embedding, followed by the computation of the DFT com-
ponents by (9), that are then used to compute the MTF. Al-
though the DCT is also a real transform, it does not provide
the same simplicity in computing the MTF as the DHT.

The computed DHT coefficients are divided into M
equal-width subbands, like the MTF, and data embedding in
the coefficients of each subband is carried out with the sub-
band SCS parameters {04, Ay, }.

3.3 Determination of subband SCS parameters

The maximal embedding distortion in (1) is o?A% /4, while
the average embedding distortion is a?A%/12. Distortion
in the m’th subband that is greater than Sy, » (7) may be
audible. It is required therefore that the subband maxi-
mal embedding-distortion will be bounded from above by
the SMT. By equating the subband maximal embedding-
distortion with the SMT: 101log, o[22, /4] = Spin.m[dB], the
subband average embedding-distortion can be expressed in
terms of Syyinm by:

y R 10Swn/10

Owm =75 3

(10)

Assuming that a channel-noise model is given, and denoting
the noise variance estimate in the m’th subband by 67, the
value of the subband scale factor, ¢;,, can be obtained from
(10) and (4).
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Figure 1: A schematic drawing of a speech signal power spec-
trum estimate, |Xk|2, divided into 4 subbands; MTF - Sj; The SMT
- Smin.m> 18 marked by the horizontal solid lines. Additive white
gaussian noise (AWGN) source power spectrum estimate \Vk|2 is
marked by the dashed line. The WNR in the first subband is also
marked.

Formally, the subband quantization-step value is given
now from (10), by &}, = o%m 105minm/20However, to improve
the robustness of the quantization-step estimation in the de-
coder, the applied subband quantization-step is selected to
be one of a finite pre-defined set of quantization-step values,
denoted by {A° A!, ..., A’~1}, that will be known also at the
decoder. Therefore, the quantization-step in the m’th sub-
band is obtained by quantizing, in the log domain, the above
computed A, yielding:

Dm
Ay =1020, (11)

Swminm=+2010g10[2/0m]
c
*

quantization step of A, in [dB].

where D, £ ¢ L J and the constant c is the

3.4 Selecting subbands for data embedding

There can be various approaches for selecting subbands for
data embedding. A possible criterion is to embed data in a
specific subband only if speech is present and the estimated
WNR in that subband is greater then a given threshold value,
that is set according to a target BER value. Another criterion
is to embed data in a predefined fixed number of subbands,
chosen dynamically from the set of all subbands, as those
that provide the maximal estimated WNR, when speech is
present.

If it is decided to embed data in the m’th subband, the
DHT coefficients are modified according to the SCS embed-
ding rule shown in (1), with the parameters {¢,,A,,}. The
modified DHT coefficients are inverse transformed to obtain
the transmitted signal.

Figure 1 schematically demonstrates the proposed data
embedding procedure.

4. DATA-EMBEDDING DECODER

In this section, the data-embedding decoder structure is ex-
plained. First, in subsection 4.1, a channel equalizer, com-
pensating for the channel filtering effect, is described. De-
tection of embedded-data presence in each subband is needed
(subsection 4.2) when the encoder chooses dynamically the

subbands for data embedding. When the decoder detects
embedded-data presence, it estimates the quantization-step
used at the encoder. Finally, with the estimated quantization
step, the embedded data can be decoded.

4.1 Channel equalization

A common model of the channel (or attack) is an AWGN
source. We assume here a more complex channel model,
modelled by a linear time—invariant (LTI) filter followed by
an AWGN source. Such a channel is typical in many applica-
tions (e.g., a telephone channel) and may adversely affect the
system’s performance. To compensate for the channel filter-
ing effect, we apply adaptive equalization. There is a variety
of adaptive equalization algorithms in the literature [5], such
as the LMS and RLS algorithms. A training signal is used in
the training stage. Blind equalization algorithms are used for
equalizing data communication channels, but to the knowl-
edge of the authors there is no blind equalization algorithm
that performs well in our scenario, where data is embedded in
amuch stronger host signal. The signal filtered by the trained
equalizer is of degraded quality because of the equalization
noise enhancement. Therefore, this signal is used only for
decoding the embedded data. Following channel equaliza-
tion, the decoder performs frame synchronization as well.

4.2 Combined embedded-data presence detection and
quantization-step estimation

To test for embedded-data presence in a given subband, we
define two possible hypothesis:
e Hypothesis Hy: embedded-data is present in the given
subband.
e Hypothesis Hj: embedded-data is absent in the given
subband.
We define two probability density functions p(Y|Hop) and
p(Ym|Hy). Yy, is the result of (5) applied to the DHT coef-
ficients of the received signal in the m’th subband, denoted
by R,,. In [4] the functions p(Y,|Ho) and p(Y,|H;) are
denoted by p(y|Ho) and p(y|H) ), and their properties are ex-
plained.

The decoder computes the quantization step, A, dec, bY
repeating the same steps done in the encoder for com-
puting the quantization step (7),(10)-(11). The estimated
quantization-step is one of the set of quantization steps,
{AO,A!,... AV71Y. Afterwards, a test set of quantization-
step indices is chosen, denoted by G. For example, if
{Dpgec =87 i€{0,1,...,J—1}}, we can choose the test
set as G = {i — 1,i,i+ 1}. Using the test set G, (5) is ap-
plied to the received subband DHT coefficients R,,, to obtain
{Ys; 2€G}.

The log-likelihood ratio (LLR), for each quantization
step of the test set, is computed from:

N/M—1 g
g "/ Y> |H
Ly, =log {p(Ygl‘fo)} =lo nzlili/z(;qp( il g€t
p(Y5|H) Milo P ilH)
(12)

The LLR, L%, is a measure of the validity of the assumption
that AS is the quantization step used in the encoder.

The embedded-data presence detector first computes the
quantization-step index that maximize the LLRs, L§;:

g= argglea}é;L%. (13)
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The maximal LLR from (13), denoted by L‘fn* , is then used in
the subband embedded-data presence detection rule:

M Nt L8 >T 14
m — 0, Lf;yn*STa

where T is a decision threshold. The detector decides that
embedded-data is present in the m’th subband if I, = 1, and
that it is absent if I, = 0.

If I,, = 1, the quantization step in the m’th subband is
estimated by the quantization-step value that maximize the
LLR according to (13), i.e.,

A, =18 . (15)

Using the estimated subband quantization step, A, the

embedded data can be extracted using the procedure de-
scribed in subsection 2.2.

5. SIMULATION RESULTS

We demonstrate the proposed data embedding technique by
embedding data in a speech signal transmitted over a tele-
phone line.

The telephone line causes amplitude and phase distortion
combined with PCM quantization noise and AWGN. The
telephone line simulation model is based on a ITU-T stan-
dard [7]. The full band is partitioned into M = 8 subbands.
The first and last subbands are not used for data embedding
because the telephone line has a large attenuation in the fre-
quency ranges of 0-300Hz and 3400-4000Hz. To equalize
the telephone line we used a RLS equalizer with 256 taps.

Data embedding transparency was evaluated by the per-
ceptual evaluation of speech quality (PESQ) tool [8]. The
evaluation results are equivalent to a mean opinion score
(MOS) scale of [0-4.5]. A score between 3.6 and 4.2 is
widely accepted as relating to good quality. The comparison
is between the original speech signal and the received signal
before equalization. The encoder parameters were empiri-
cally set by constraining the average MOS result to be more
then 3.9. Informal listening test confirmed the PESQ tool
evaluation.

For channel coding we used Bose-Chaudhuri-
Hoequenghem (BCH) error-correction coding with 16
information bits and 31 coded bits per subband. Since there
are 32 coefficients in each subband, an extra parity bit is
concatenated to the coded bits, resulting in 32 coded bits per
subband. Data is embedded in single subband in each speech
frame when an energy based voice activity detector (VAD)
detects speech presence. The selected subband is chosen
to be the one with the maximal estimated subband WNR.
The average number of frames for which the VAD detected
speech was approximately 60 percent of the total number
of frames. The data-embedding rate when speech is present
is equal to 500 information bits/second, corresponding
to an average data transmission rate of 300 information
bits/second. This system configuration is denoted as system
A.

The results are compared to an embedding system, de-
noted as system B, operating without the use of a MTF. As
for system A, a single subband is selected for data embed-
ding, when the VAD detects speech presence. The selected
subband is chosen to be the one with the maximal subband

variance. For the computation of the embedding parame-
ters, {0y, 0y}, we replace Sy, (7) with {1010g10[6)§m] -
p}[dB], where 62, denotes the m’th subband coefficients
variance, and the constant p is chosen such that the degra-
dation in speech quality, compared on a MOS scale, will be
approximately equal to that of system A.

The MOS (as measured by PESQ) is approximately 3.95
for both systems, and the data-embedding rate is equal to
300 information bits/second. The BER values obtained are
approximately 10~# and 1.2- 1072, for systems A and B, re-
spectively. The subband average WNR values, in the sub-
bands where embedded-data presence was detected, are ap-
proximately 21dB and 12dB, respectively.

6. CONCLUSIONS

We have presented a data-embedding algorithm in speech
signals that applies an auditory perceptual masking model
to a SCS-based data embedding system, and outperforms
SS based data-embedding techniques. We propose meth-
ods for computing subband data-embedding parameters in
the encoder, and for estimating the subband embedded-data
presence and quantization step in the decoder. Although
we demonstrated the proposed data-embedding technique for
speech signals, the technique can also be used, with slight
modifications, for data embedding in audio signals.
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