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ABSTRACT

Sinusoidal coding is a key technique for low rate audio coding. In
sinusoidal coding, the target signal is represented by perceptually
relevant sinusoids; however, often the sinusoids are estimated with-
out taking into account that the sinusoidal parameters are going to
be differentially encoded. In this paper we present an algorithm for
joint extraction and time-differential encoding of sinusoidal model
parameters. For a pre-specified target bit rate, the algorithm extracts
the set of sinusoids for a sequence of signal segments which lead
to minimum distortion in the reconstructed signal. Furthermore, it
determines which sinusoids in a given segment should be encoded
time-differentially relative to which in the previous segment. Sim-
ulation experiments show that the proposed algorithm leads to a
reduction of 3-5% in bit rate compared to a state-of-the-art time-
differential sinusoidal coding system.

1. INTRODUCTION

In low bit-rate audio compression systems, the target signal to be
encoded is typically represented using a set of complementary sig-
nal models. Often, the model set includes sinusoidal, noise, and
transient models [1, 2]. On the encoder side, model parameters are
estimated, quantized, encoded and transmitted to the decoder, where
the decoded parameter set is used for reconstructing the quantized
target signal.

Practically all low bit-rate audio coders employ a sinusoidal
model for representing the periodic constituents of the target sig-
nal [1, 2, 3, 4]. Traditionally, the sinusoidal model represents signal
segments as linear combinations of sinusoidal functions, each rep-
resented by an amplitude, a frequency, and possibly a phase param-
eter. In order to minimize the bit-rate needed for representing the
sinusoidal parameters, inter- and/or intra-segment parameter corre-
lations may be exploited using time-differential (TD) or frequency-
differential (FD) encoding techniques, see e.g. [3] and [5], respec-
tively. We focus in this paper on TD-techniques.

Fig. 1 shows traditional blocks in a TD-based sinusoidal encod-
ing system, see e.g. [1]. The target signal is divided into consecutive
segments of suitable durations, and perceptually relevant sinusoids
are estimated for each segment. In TD-based encoding schemes,
the inter-segment correlations between sinusoidal components are
exploited by associating components in a given segment with com-
ponents in the previous segment (so-called linking), thereby form-
ing ’tracks’ in the time/frequency plane. Then, short or perceptually
less relevant tracks may be eliminated [1], and the parameters of the
remaining tracks quantized, according to a given available target bit
budget. Finally, the quantizer indeces are encoded and packed to
form a bitstream. Although the problems solved by the blocks in
Fig. 1 depend on each other, they are typically solved one at a time,
without taking into account this dependency (although some coders
employ iterations over some of the blocks). For example, often, the
’Parameter Estimation’ block extracts the set of perceptually most
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Figure 1: Block diagram of traditional TD-based sinusoidal coder
(the block order of a specific coder may differ from the one shown
here).

relevant sinusoids for a given segment, without taking into account
their associated bit rate.

In this paper we describe an algorithm which does take into ac-
count the inter-dependence between several of the blocks in Fig. 1:
it aims at finding a jointly optimal solution of the subproblems in-
dicated by the dashed box in Fig. 1. The algorithm operates in a
rate-distortion (R-D) framework, where the distortion in the recon-
structed target signal is minimized subject to a bit rate constraint.
Specifically, the algorithm finds for a sequence of signal segments
the sinusoids which when TD-quantized and encoded at a certain
pre-specified bit rate results in minimum distortion in the recon-
structed signal. Additionally, it determines which sinusoids in a
given segment should be quantized/encoded using TD-techniques
and which should be quantized directly, i.e., without using differen-
tial techniques. Finally, for TD-encoded sinusoids the algorithm
determines which sinusoidal components in a given segment are
matched to which in the previous segment.

The algorithm proposed here extends on the one presented in
[6] in one important way. In [6] sinusoidal components are dis-
tributed across segments without taking into account the fact that
some of them may be TD-encoded, and, for this reason, be ’cheaper’
in terms of bit rate than others. The proposed algorithm does take
this fact into account. Specifically, it distributes sinusoids jointly
over several consecutive segments and determines the optimal se-
quence of TD-relations between the segments.

2. OPTIMAL TD-ENCODING OF MULTIPLE SEGMENTS

Let us consider the case where the target signal has been divided
into consecutive segments, and assume that for each such segment
a number of candidate sinusoidal components have been estimated.
Furthermore, assume that the quantizers needed for quantizing the
corresponding model parameters are given. A segment must be rep-
resented by a subset of its candidate components, and we allow each
of these to be quantized and encoded either directly, i.e., without
differential techniques, or differentially relative to one of the com-
ponents in the previous segment. For the differential case we im-
pose a similar constraint as in [6] that no two components in a seg-
ment can be quantized and encoded relative to the same component
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Figure 2: Example of coding template sequence. Black dots rep-
resent candidate components. Arrows and ground symbols indicate
TD and direct quantization, respectively. Crosses indicate discarded
candidate components.

in the previous segment.

For a sequence of segments we wish to answer the following
questions: a) which candidate components should be used (and
which should be discarded), b) which of the used components
should be TD-encoded and which should be encoded directly, and c)
which of the TD-encoded components should be matched to which
in the previous segment. The problem at hand is to answer these
questions such that the resulting distortion in the reconstructed sig-
nal is minimized under a bit rate (or entropy) constraint.

Let us consider the consequences of some of the answers to
questions a)—c) in terms of rate and distortion. If a candidate com-
ponent is discarded, it will not appear in the sinusoidal reconstruc-
tion, and, consequently, a modeling error will occur. If it is chosen
to use a candidate in the reconstruction it may be quantized directly
or differentially. In either case a (typically smaller) quantization er-
ror occurs; however, in both these cases the smaller error is achieved
at the expense of a certain bit cost.

We consider the situation where consecutive segments of the
target signal have been grouped into L non-overlapping ’super-
segments’, and where selected candidate components in the first
segment of each super-segment are restricted to be quantized di-
rectly. This situation is of interest for packet based transmission
channels, because it allows a given super-segment to be decoded
even if the packet containing the previous super-segment did not
arrive at the decoder.

In order to formulate our problem, we introduce the concept
of coding templates. For a given segment, a coding template rep-
resents one specific combination of answers to the questions a)—c)
posed above. Consider for example segment m + 1 in the small-
scale example of Fig. 2; in this example the coding template rep-
resents the case where the first candidate component is discarded,
while the second one is quantized differentially relative to the first
component in the previous segment.

2.1 Problem Formulation

Our goal is find coding template sequences for each super-segment
such that the total per signal distortion is minimized subject to a
bit-rate constraint. Assuming that distortions and rates are additive
across super-segments, our problem can be formulated as follows:

L L
min D, (v,) such that /Z R,(v)) <Ry, (D)
=1

v=[v; vy vy =1

where v, denotes a coding template sequence for super-segment /,
D, and R denotes the distortion and rate, respectively, in super-
segment ll and R, denotes the total target bit budget. Fig. 2 shows
a small-scale example of a particular coding template sequence for
a super-segment consisting of three segments with two candidates
in each segment. Using the method of Lagrange multipliers and ob-
serving that super-segments can be treated independently, the prob-
lem in Eq. (1) can be solved by minimizing the following lagrangian

cost function:
/z min (D, (v,) +AR,(v))) , 2
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Figure 3: Small-scale example of super-segment containing three
segments with two candidate components in each.

where A > 0 is a Lagrange multiplier. We note that Eq. (2) con-
sists of L independent minimization problems, one for each super-
segment. Assuming that distortions and rates are additive across
segments, we can formulate the subproblems of Eq. (2) as follows

M,
min Z (Dm,l(vm,l) +)\Rm,l(vm,l)) ’ (3)

VI:[Vl,l Vou VM[,I] m=1

where M, is the number of segments in super-segment /, Vil de-

notes the coding template of the m’th segment in super-segment
[, and D, ] and R, ; denote the corresponding distortion and rate,

respectlvely We note that the coding templates in a sequence
v, = [Vl,l YRR vM“l} are interdependent. Choosing e.g. template

Vi1, in segment m — 1 will affect the set of valid coding templates

for segment m. Taking these coding template interdependencies into
account when solving the subproblem in Eq. (3) complicates the so-
lution.

2.2 Problem Solution

In the following we focus on a solution of the subproblem in Eq. (3),
which takes into account the interdependencies mentioned above.
Since this problem occurs locally within a super-segment, we shall,
for notational convenience, omit the super-segment subscript.

We represent the set of valid coding template sequences in Eq.
(3) using a bipartite graph. Consider for illustration purposes the
small-scale example shown in Fig. 3; the super-segment shown here
consists of three segments each containing two candidate compo-
nents. It can be verified that the set of valid coding template se-
quences for this example can be represented by the bipartite graph
shown in Fig. 4. The graph consists of three subgraphs (of which
one has been marked by a dashed box) which represent the set of
coding templates for each segment. The top subgraph is different
from the others, because candidate components in the first segment
of a super-segment are restricted to be directly encoded; this point
will become clear from what follows.

Consider here the subgraph for segment m + 1 indicated by
the dashed box in Fig. 4. The subgraph consists of two disjoint
set of nodes, one set (on the left-hand side) related to the previ-
ous segment () and one set (one the right-hand side) related to
segment m + 1. Denote by K, the number of candidate compo-
nents in segment m. The right-hand node set contains K, | nodes
S1mt1 " SK,, m] which represent the candidate components and
addltlonally 2 ne1 dummy nodes. Edges between the candidate
nodes on the right-hand side and the left-hand node set represent
possible consequenses for the candidate components. Specifically,
edges between Sim and s ] nodes represent differential quanti-
zation and encoding of candidate component number j relative to
component  in the previous segment. Edges between *ground’ and
s j’m 1 hodes represent direct quantization of candidate component

Simt1s while edges between | and s ; 1 nodes correspond to the
case where candidate component 8 i m+1 is discarded. The edges be-
tween the top-right nodes in one subgraph and the bottom-left nodes
of the following are important in the sense that they ensure that can-
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Figure 4: Bipartite graph for representing the set of valid coding
template sequences for the case of three consecutive segments each
containing two candidate components.

didates discarded in one segment are not used in TD-relations in the
following segment.

It can be verified that each valid coding template sequence cor-
responds to a linear assignment in the bipartite graph; a linear as-
signment is a subset of edges such that each node in the graph have
exactly one edge assigned. Fig. 5 shows an example of the linear
assignment corresponding to the coding template sequence shown
in Fig. 2.

Each edge in the bipartite graph is assigned a weight which
corresponds to a cost in terms of rate and distortion of the quan-
tization (direct or differential) or component rejection represented
by the edge. Still focusing on the middle subgraph of Fig. 4, edges
representing differential encoding possibilites have weights of the
type:

w:af}:':H_1 +Ar;.’;”n+1, 4)
where d"  denote the quantization distortion, and »%™  the

Jm+1 Jj.m+1

number of bits needed for representing component j in segment
m+ 1 differentially relative to component i in segment 7. In a sim-
ilar manner, edges representing direct encoding have weights of the
form ) .

w=df A (5)
Edges representing discarding components have the following type
of weights

w=dned (©)

where d;?”;’q‘il represents the modeling distortion occuring by not

including candidate j in the sinusoidal representation. Finally,
edges which are not connected to the K, , candidate nodes

Stmt1 -+ +5K,,, mt1 all have weights w = 0.

Assuming that per segment distortions and rates can be found
by adding up the distortions and rates related to each candidate com-
ponent, it turns out that the problem in Eq. (3) is solved by finding
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Figure 5: Example of linear assignment in bipartite graph corre-
sponding to coding template sequence shown in Fig. 2.

in the bipartite graph of Fig. 5 the linear assignment with minimum
total weight. This problem, which is often refered to as the linear as-
signment problem, is well-known within graph theory, and several
schemes exist for solving it; assuming that each segment in super-
segment / contains K; candidate sinusoids, a solution can be found
in 0((3M,K;)?) arithmetic operations, see e.g. [7].

In summary, the scheme for solving our original problem in Eq.
(1) involves, for a given value of the Lagrange multiplier A, the so-
lution of L independent subproblems of the form in Eq. (3). Each of
these subproblems can be formulated and solved as instances of the
linear assignment problem. The solution of an assignment problem
describes unambiguously the coding template sequence to be used
in order to minimize the distortion under the rate constraint spec-
ified by the selected value of A. Since, usually, this A value does
not correspond to the target rate of interest, A may be updated us-
ing e.g. a bisection method, and the entire process repeated until the
target rate of interest is reached. For more details on the proposed
algorithm, the reader is refered to [8].

3. SIMULATION EXPERIMENTS

We evaluate the presented algorithm in simulation experiments with
audio signal fragments, sampled at 44.1 kHz and with a duration of
7-13 seconds. The following signal fragments were included in the
experiments: Abba, Celine Dion, German male speech, Metallica,
and Suzanne Vega.

In all experiments, the input signal is segmented into non-
overlapping fixed-length super-segments of 8192 samples (corre-
sponding to 186 ms at a sampling rate of 44.1 kHz), which in turn
are segmented into fixed-length segments of 1024 samples with an
overlap of 50%, resulting in M, = 16 segments per super-segment.
For each segment the candidate component set is created by estimat-
ing the 80 perceptually most relevant sinusoidal components using
the psycho-acoustic based matching pursuit algorithm described in
[9].

In all experiments, amplitude parameters are quantized using a
log-quantizer with a relative spacing between reconstruction points
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System B | 26.0 | 18.0 | 10.0

Abba, System A | 25.1 | 17.3 | 9.5
Celine, System A | 25.1 | 173 | 9.5
Speech, System A | 25.3 | 174 | 9.6
Metallica, System A | 254 | 17.5 | 9.6
Vega, System A | 25.1 | 174 | 9.5

Table 1: Rates [kbps] needed with System A (the proposed algo-
rithm) and System B for achieving similar distortion levels for dif-
ferent test signals.

of 1.6% (both for direct and time-differential quantization), while
a log-quantizer with a relative output level spacing of 0.3% is used
for frequency parameters. Direct and time-differential phase param-
eters are quantized using a 4 bit uniform quantizer. With these fixed
quantizer settings, the quantized signals are perceptually identical
to signals constructed from unquantized sinusoidal parameters.

With these settings, the proposed algorithm is run for a given
target bit budget, and the selected sinusoids are TD-quantized and
encoded according to the optimal coding template sequence found
for each super-segment. Let us for later reference denote this system
as 'System A’.

We compare System A with a variant of the TD sinusoidal cod-
ing system in [6]. This system has a potential weakness related to
the way in which sinusoids are selected and distributed across seg-
ments. Specifically, in [6] sinusoids are distributed across the fixed-
length segments according to perceptual relevance; the bit cost as-
sociated with individual sinusoidal components is not taken into ac-
count (in contrast to the presented algorithm). For later reference,
we refer to this TD system as *System B’.

The algorithms for determining TD-relations in Systems A and
B both rely on edge weights reflecting the number of bits for en-
coding of direct and differential model parameters (Egs. (5)—(6))
and distortion terms (Egs. (4)—(6)). In practice, the rate values are
found from look-up in pre-calculated Huffman code word tables,
while all distortion terms are computed using the perceptual distor-
tion measure described in [10].

For a given test signal and a given value of R,, the proposed al-
gorithm was executed, and the resulting total signal distortion (the
distortion term in Eq. (1)) was noted. This procedure was repeated
for a large range of target rates R;, and for all test signals. Subse-
quently, distortion-rate (D-R) curves for each signal could be plot-
ted by linearly interpolation between the obtained distortion-rate
pairs. A similar procedure was followed for System B, resulting
in another set of D-R curves. A general first observation related to
these D-R curves is that the distortion values obtained with System
A (the proposed algorithm) were always lower than those of System
B, for any target bit rate; conversely, the bit rate needed for reach-
ing a certain distortion level was always lower with the proposed
algorithm.

Table 1 summarizes the information of the D-R curves by show-
ing the bit rates needed with System A for achieving distortion lev-
els corresponding to target rates of 26, 18, and 10 kbps with System
B. For example, we see that when System B requires 26.0 kbps for
encoding the Suzanne Vega signal at a certain distortion level, Sys-
tem A needs 25.1 kbps. In comparing the performance of Systems
A and B we see from Table 1 that the proposed algorithm typically
achieves a bit rate reduction of approximately 3% at bit rates around
26 kbps and roughly 5% around 10 kbps.

We can explain the larger efficiency of the proposed system
towards lower bit rates by considering quasi-periodic signals, e.g.
voiced regions of voice signals. For larger bit-rates, say 26 kbps,
the bit budget allows for extraction of most of the harmonics in the
signal, and the extracted sinusoids will form unbroken harmonic
’tracks’ when plotted in the time-frequency plane. In this case, both
Systems A and B finds that TD-encoding of sinusoids within each
track is the most efficient. For lower rates, however, the bit budget
does not allow for extraction of all harmonics. In System B, where

sinusoids are extracted according to perceptual relevance only, the
sinusoids do not necessarily form unbroken harmonic tracks, since
the perceptually most important sinusoids do not necessarily belong
to the same harmonic, when seen across a certain time duration. In
this case, System B becomes less efficient, because TD-parameter
differences will increase and thus (typically) become more bit rate
expensive. System A, on the other hand, takes the associated bit
cost into account when extracting sinusoids. As a consequence, the
sinusoids chosen with this algorithm tend to form unbroken tracks
(more tracks will occur for increasing bit rate), and the encoding of
the sinusoids becomes more efficient.

While the problem formulation presented here assumed fixed
quantizers for each sinusoid, it appears possible to generalize the
algorithm such that individual sinusoidal quantizers are adapted ac-
cording to the specified target bit rate. This remains a topic for
further research.

4. CONCLUSION

In this paper we have presented an algorithm for jointly extracting
and time-differential encoding of sinusoidal model parameters. For
a pre-specified target bit rate, the algorithm selects from a set of
candidate sinusoids for a number of consecutive segments the sub-
set which leads to minimum distortion in the reconstructed signal.
Simulation experiments show that the proposed algorithm leads to
a reduction of 3-5% in bit rate compared to a state-of-the-art time-
differential sinusoidal encoding system.
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