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ABSTRACT

In this paper low-complexity equivalent realizations for multirate
Volterra systems are presented. All analysed filter configurations
contain in addition to the nonlinear filter both an upsampler and a
downsampler. Using Volterra filters a wide class of nonlinear sys-
tems can be approximated with arbitrary precision. Also special
cases, like cascades of linear filters and memoryless nonlinearities
(LNL filters, Hammerstein model , Wiener model) are considered.
To derive the new realizations linear and nonlinear polyphase de-
compositions are employed. All operations are performed at the
lowest possible sampling rate. Furthermore, some coefficients dis-
appear in the polyphase representation and therefore, the computa-
tional complexity can be reduced significantly.

1. INTRODUCTION

In the following sections we consider the basic scheme in Fig. 1
consisting of an upsampler, a general nonlinear operator / and a
downsampler. The goal is to minimize the high computational com-
plexity (CC) caused by the nonlinear filter operating at the highest
sampling rate. As known from linear multirate systems ([1],[2]) we
should move the upsampler as far as possible to the right and the
downsampler as far as possible to the left. Generally, this is not
practicable because a nonlinear filter and an up- or downsampler do
not commute. Therefore, we focus on Volterra systems [3] which
offer polyphase implementations operating at the low sampling rate
[4]. Depending on the up- and downsampling factor L and M dif-
ferent cases are analysed.

Such configurations typically occur in the field of nonlinear
echo cancellation for asymmetric data transmission systems. E.g.
Fig. 2 depicts a simplified ADSL-CO (central office) application
[5, 6] involving oversampling AD and DA conversion. The down-
stream signal has a sampling rate of 2.208 MHz, the upstream
signal is processed at 276 kHz. Note that only the echo relevant
parts are shown: upsampler, interpolation filter, ZA-DAC, transmit
filter, linedriver, hybrid, receive filter, XA-ADC, decimation filter
and downsampler. In this example the ADC and DAC are clocked
both with 26.496 MHz and mainly the linedriver could exhibit a
nonlinear behaviour limiting the performance of a linear echo can-
celler. Therefore, a nonlinear echo canceller should be employed.
To model the nonlinearity a Volterra filter could be used. If all the
linear filters in the echo path are included in an extended Volterra
filter we get a scheme as shown in Fig. 1 with L = 12 and M = 96.
In fhe following we focus on low-complexity realizations for the the
nonlinear part of the configuration in Fig. 1.

Figure 1: Nonlinear multirate system consisting of an upsampler, a
nonlinear filter and a downsampler.
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Figure 2: Echo path in a full-duplex communication system.

2. IDENTITIES FOR LINEAR AND NONLINEAR

MULTIRATE FILTERS

In this section we present selected identities known from linear and
nonlinear multirate systems. Using these identities a simplification
of the scheme in Fig. 1 in terms of computational complexity (CC)
will be possible. In the following we select a homogenous second-
order Volterra kernel [3] with impulse response 4, [, m,] for the
nonlinear operator H in Fig. 1.

Fig. 3 and Fig. 4 show the polyphase implementation of a ho-
mogenous second-order Volterra kemel [4]. HY(z),z,) is the z-
transform of one single polyphase component operating at the low
rate:
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In Fig. 4(b) the blocks with two inputs correspond to bilinear
Volterra systems (see [7]) with the input-output relation:
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This system behaves like a linear filter (FIR) if one of the inputs is
held constant. The corresponding two-dimensional z-transform is
the same as in Eq. (1).

In Fig. 3(c) a more compact drawing is shown. We use the no-
tation H, (z,,z,) with bold font to emphasize that H,(z,,z,) is a
SIMO system, 1.e. it has a single input and L outputs. The over-
line should point out the fact, that only the L (out of Z2) compo-
nents /¥ (z,,z,), i € {0,1,...,L — 1}, appear in the polyphase im-
plementation. In Fig. 4(c) all the M? polyphase components occur
in the MISO realization block and, therefore, we use the notation
H,(z,,z,) without overline.

Note that in the upsampling case the CC can be reduced by a
factor of about L2 (all operations are performed at the low rate and

uy[n—myJuy[n—m,].



in addition, not all polyphase components appear in the final poly-
phase representation [4]!), in the downsampling only by a factor of
about M (all operations are performed at the low rate).
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Figure 3: Polyphase implementation of a homogenous second-order
Volterra kernel (upsampling case). (a) starting scheme. (b) corre-
sponding polyphase implementation. (c) compact drawing for the
two dashed boxes in (b).

Fig. 5 depicts interconnections of upsamplers with downsam-
plers. Depending on the value of L and M different simplifications
can be performed. Note that the commutativity identity in Fig. 5(c)
is valid if and only if L and M are coprime, i.e. their greatest com-
mon divisor (GCD) is 1. A proof can be found in [2].

Further identities are shown in Fig. 6. The parts (a), (b), (c) and
(d) can be easily proven. The identity in (e) can be shown via the
Bezout identity [8]. This identity guarantees that there exist integers
k, and k, satisfying the equation

kyL+k,M = GCD(L,M) 3)
or as needed in (d) the equation
—k,Li — k,Mi = —iGCD(L,M) = —i. (4)

See [9] and references cited therein for a comprehensive set of
rules for multirate signal processing including also the multidimen-
sional case.

3. SIMPLIFICATIONS FOR A HOMOGENOUS
SECOND-ORDER VOLTERRA KERNEL

Generally, there are two ways to reduce the CC of the system given
in Fig. 1. Either we exchange first the ordering of the upsampler
and the nonlinear filter or we move first the downsampler to the
left. Then, further simplifications become possible. In the following
we consider homogenous second-order Volterra kernels. Note that
based on the same principles a generalization for a Volterra kernel
of higher order is possible, too.
Depending on L and M different cases are distinguished:

Case 1: L is a multiple of M (L = L' M)

In this case the output rate is higher than the input rate. Therefore
it is advantageous to interchange the upsampler with the nonlin-
ear filter so that the filter is operating at the low input sampling
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Figure 4: Polyphase implementation of a homogenous second-order
Volterra kernel (downsampling case). (a) starting scheme. (b) cor-
responding polyphase implementation. (¢) compact drawing for the
two dashed boxes in (b).
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Figure 5: Series connection of an upsampler and a downsampler.
(a) L is a multiple of M. (b) M is a multiple of L. (c¢) L and M are
coprime.
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Figure 6: Series connection of an upsampler, a delay and a down-
sampler. (a) L is a multiple of M, k € Z. (b) L is a multiple of M,
i# kM, keZ. (c) Mis amultiple of L, k € Z. (d) M is a multiple
of L,i#kL, k€ Z. (e) L and M are coprime, i # kL, i # kM, k € Z,
k, and k, € Z.

rate. Applying the polyphase decomposition shown in Fig. 3 and
the identities of Fig. 5(a) and Fig. 6(b) a much more efficient real-
ization can be derived. Fig. 7 illustrates this procedure. Note that in
the final realization (see Fig. 7(b)) only L’ polyphase components
occur. Furthermore, for the simple case where L = M (L' = 1) only
the first term H°(z,,z,) contributes to the output.

Case 2: M is a multiple of L (M = M'L)

Also in this case, for the derivation of a polyphase implementation
of the scheme in Fig. 1 it is advantageous to interchange the up-
sampler with the nonlinear filter. This result has been shown before
in Fig. 7(a). Now, we can use the identity in Fig. 6(d): All the
branches including a delay can be cancelled because these delays
are not mulitples of L. In the remaining first branch with the term
Hgo (2,,2,) the up- and downsampler can be merged to one single
downsampler with decimation factor M’ (see Fig. 8(a)) using the
identity in Fig. 5(b). Next, we can apply the identity of Fig. 4 to
exchange the ordering of the downsampler and the nonlinear subfil-
ter Hgo (z,,2,). Fig. 8(b) shows the final result. It should be noted,
that all arithmetic operations are performed at the low output rate
(F = F" /M)

Case 3: L and M are coprime and L > M (fractional interpola-
tion)

In this case, the simplifications necessary to minimize the CC are
illustrated by the following example.

Example 1 We consider a multirate system involving a homoge-
nous second-order Volterra kernel as depicted in Fig. 9(a). The
interpolation- and decimationfactors are L = 3 and M = 2, which
correponds to a fractional interpolation. To minimize the computa-
tional efficiency 3 steps are applied.:

1. Exchange the ordering of the upsampler and the nonlinear filter

using the identity shown in Fig. 3. See Fig. 9(b) for the result

after this step.

. Move the downsampler into all parallel branches and apply the
identities of Fig. 5(c) and Fig. 6(e). The result after this step is
depicted in Fig. 9(c).
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Figure 7: Polyphase realization for the multirate circuit shown in
Fig. 1, L is a multiple of M. (a) intermediate result. (b) final result.
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Figure 8: Polyphase realization for the multirate circuit shown in
Fig. 1, M is a multiple of L. (a) intermediate result. (b) final result.

3. Exchange the ordering of the downsampler and the nonlinear
subfilters Hy' using the identity shown in Fig. 4. The Fig. 9(d)
depicts the final result.

Note that the system is not causal due to the z' and z*. To avoid this
causality problem the output must be delayed by 2 samples.

The fractional decimation case (L and M are coprime, L < M) can
be treated in the same way. Therefore it will be omitted here.

4. SIMPLIFICATIONS FOR AN LNL FILTER

We consider now an LNL cascade between an upsampler and a
downsampler as shown in Fig. 10. The LNL cascade consists of
a linear filter, a memoryless nonlinerity and another linear filter.
H,(z) and H,(z) are the corresponding system functions of the left
and right linear filter, respectively. Such a configuration could be
derived from Fig. 2 if we assume that the nonlinar behaviour of the
linedriver can be modelled via a memoryless nonlinearity.

To reduce the CC of this filter structure we have to apply a po-
lyphase representation to the linear filters. Considering that a mem-
oryless nonlinearity and an upsampler/downsampler commute, fur-
ther simplifications can be performed. The next example should
illustrate this methology.

Example 2 In Fig. 10 we select L =2 and M = 4. The final repre-
sentation with reduced CC can be derived in 3 steps and is shown
in Fig. 11:



Figure 9: Polyphase realization of the multirate circuit of example
1. (a) starting scheme. (b)-(d) intermediate results. (d) final result.
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Figure 10: Nonlinear multirate system consisting of an upsampler,
an LNL cascade and a downsampler.

1. Apply a polyphase representation to the linear filters

2. Interchange the ordering of the memoryless nonlinearity and the
upsampler

Combine up- and downsampler in proper branches using the
identies in Fig. 5(b), Fig. 6(c) and Fig. 6(d)

Note that the CC of the memoryless nonlinearity is not reduced.
Instead of one linearity at the high rate 2F" we have to compute
the same nonlinearities twice at the input rate F". But the overall
CC could be lowered due to the polyphase implementation of the
linear filters.

3.

Since the Hammerstein and Wiener model are special cases of the
LNL cascade presented above, the corresponding polyphase repre-
sentation can be easily derived if one of the linear filters is replaced
by a through-connection.

5. CONCLUSION

Using linear and nonlinear polyphase decompositions new low-
complexity equivalent representations for a series connection of an
upsampler, a nonlinear filter and a downsampler are presented. For
the derivation of these representations a homogenous second-order
Volterra filter has been selected as an example but the results can be
extended to higher-order kernels. Depending on the upsampling and
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Figure 11: Polyphase realization for the multirate circuit shown in
Fig. 10, L =2, M = 4. (a) intermediate result (b) final result

downsampling factor different cases including the fractional deci-
mation/interpolation case are discussed. Such configurations where
the input sampling rate differs from the output sampling rate occur
typically in echo paths of asymmetric data transmission systems.
Further applications will be addressed in future investigations.
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