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ABSTRACT

We present a new low complexity noise reduction (NR) method
based on spectral subtraction and overlap-add analysis/synthesis. A
voicing dependent cut-off frequency is introduced, dividing the
speech spectrum into two parts. In lower end, the NR gain function
varies with frequency bins to minimize distortion at pitch harmonic
frequencies while maximizing the suppression between them. In
higher end, the gain function is estimated per critical band reducing
energy variations. The gain function is further smoothed over time
with a smoothing factor adaptive with the actual NR gain to pre-
vent distortion on voiced speech onsets. The NR is as a part of
VMR-WB speech codec recently selected as a new 3GPP2 stan-
dard for wideband speech applications in cdma2000 3G wireless
system.

1. INTRODUCTION

Reducing the level of background noise is very important in
many communication systems. For example, mobile phones
are used in environments where the communication system
needs to operate in the presence of high levels of car noise
or street noise. In office applications, such as video-
conferencing and hands-free internet applications, the sys-
tem needs to efficiently cope with office noise. Noise reduc-
tion also improves the performance of the speech recogni-
tion algorithms increasingly employed in a variety of real
environments.

Spectral subtraction is one the most used techniques for
noise reduction [1]. Spectral subtraction attempts to estimate
the short-time spectral magnitude of speech by subtracting a
noise estimation from the noisy speech. The phase of the
noisy speech is not processed, based on the assumption that
phase distortion is not perceived by the human ear. In prac-
tice, spectral subtraction is implemented by forming an SNR-
based gain function from the estimates of the noise spectrum
and the noisy speech spectrum. This gain function is multi-
plied by the input spectrum to suppress frequency compo-
nents with low SNR. The main disadvantage using conven-
tional spectral subtraction algorithms is the resulting musical
residual noise consisting of “musical tones” disturbing to the
listener as well as the subsequent signal processing algo-
rithms (such as speech coding). The musical tones are mainly
due to variance in the spectrum estimates. To solve this prob-
lem, spectral smoothing has been suggested, resulting in re-
duced variance and resolution. Another known method to
reduce the musical tones is to use an over-subtraction factor
in combination with a spectral floor [2]. This method has the

disadvantage of degrading the speech when musical tones are
sufficiently reduced.

In the present paper, we introduce a low-complexity NR
technique for 50-7000 Hz wideband (WB) speech communi-
cation systems, based on spectral subtraction and overlap-add
analysis/synthesis. Similarly to the approach used in the
EVRC speech codec [3], the amplitude spectrum is divided
in critical bands [4] and a gain function based on SNR is
computed.

However, in the presented contribution the temporal
resolution of the gain function depends on the nature of the
speech signal. While the noise energy is always estimated per
critical band, the energy of the processed noisy speech frame
and the spectral subtraction are performed per frequency bin
up to a voicing cut-off frequency. Above this frequency, tra-
ditional subtraction following critical bands is used. For high
pitched speakers, splitting the processing this way has the
advantage of an important distortion reduction of low fre-
quency harmonics and better NR in the valleys between
them. At the same time, the smoothing advantage of the per-
critical-band subtraction is maintained whenever the signal
periodicity or the resolution of the spectral analysis is not
high enough.

The NR gain function is smoothed over time using an
adaptive smoothing factor inversely related to the actual scal-
ing gain (smoothing is stronger for smaller gains). This ap-
proach prevents distortion in high SNR speech segments
preceded by low SNR frames, as it is the case for voiced on-
sets for example.

The described noise reduction algorithm has been used
in the Variable-Rate Multimode WB (VMR-WB) speech
codec, recently selected as a new 3GPP2 standard for WB
speech telephony, streaming, and multimedia messaging ser-
vices in the cdma2000 third generation wireless system [5].

The paper is organized as follows. In the next section,
the overview of the algorithm is given. Section 3 describes
the noise energy estimation. In section 4, the NR details and
examples are presented. In section 5, the performance of the
NR is compared to a WB extension of a well-established NR
reference algorithm of EVRC.

2. SYSTEM OVERVIEW

While the algorithm presented in this paper can be used for
any application where NR is needed, it has been optimised
for use within wideband speech coding systems. To mini-
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mize complexity and program memory, many of the parame-
ters it relies upon are thus usually available in a speech en-
coder.

The Flow chart is outlined in Figure 1. The spectral
analysis is performed twice per 20 ms frame using a square
root of a Hanning window (which is equivalent to a sine win-
dow) with 50% overlap. This window is well suited for
overlap-add methods when applied once at spectral analysis
stage to obtain the spectrum estimate, and once at the de-
noised signal reconstruction before overlap-add. This way,
the artefacts introduced through a frequency-domain filtering
via the NR gain function are smoothed.
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Figure 1: NR system flow chart.

The Voice Activity Detector (VAD) output is then used
to control the suppressed noise level. If active speech frame
is detected, the gain function is dependent on the SNR for
each frequency bin or critical band as mentioned previously.
Otherwise, a constant gain function is applied to the whole
spectrum.

The noise estimation update is split into two steps for the
following reason. Basically, the noise should be updated only
on inactive speech frames. In our case, the noise update deci-
sion is made based on Linear Prediction (LP) analysis and
open loop pitch analysis that are both executed on the de-
noised speech signal. The noise can thus be only updated for
the next frame. The only exception is when the noise update
for the present frame is lower than the previous estimate for
some critical band. In this case, the noise can be updated
downwards to adjust the estimate in that particular band al-
ready before executing NR, independently of speech activity.

A natural question arises why we need to wait for the pa-
rameters to make a decision about speech activity, if we al-
ready have an estimation of it in the form of the VAD output.

The answer is that it is very useful to have the decision about
the noise estimation update independent of the VAD output,
especially if the parameters for noise update decision are
rather insensitive to noise variations. This way, if the noise
rises rapidly and VAD erroneously indicates active speech
frames, the noise estimate will continue to update and the
VAD will not stay locked.

3. NOISE ESTIMATION UPDATE

The parameters used for the noise update decision are pitch
stability, voicing, signal non-stationarity, and ratio between
2" order and 16™ order LP residual error energies.

The pitch stability is computed as a pitch estimate dif-
ference between several adjacent open loop pitch analyses.
The voicing factor corresponds to the normalized correlation
of the de-noised, perceptually weighted speech at the esti-
mated open loop pitch period.

The frame non-stationarity assesses the per-critical-band
energy variation of the current frame with respect to the long
term average, similarly as the spectral deviation used in [3].
In our case it is given by the product over all critical bands of
the ratios between the frame energy per critical band, Ecp,
and the average long term energy per critical band, Ecz, that
is

i max(Ees(i), Eca(i))
L min(Ees(i), Eca(i))

where b,,;,, and b, are the minimum and the maximum
critical bands respectively.

The ratio between E(2) and E(16), the LP residual ener-
gies after 2™ order and 16™ order analysis, reflects the fact
that to represent a signal spectral envelope, a higher order of
LP is generally needed for speech signal than for noise. In
other words, the difference between E(2) and E(16) is sup-
posed to be lower for noise than it is for active speech.

The noise estimate is updated if none of these parame-
ters indicate an active speech frame, i.e. a quite conservative
approach is taken. Further, a hangover is added to further
diminish the risk of updating the noise on an active speech
frame.

4. NOISE REDUCTION

Noise reduction is applied on the signal domain and de-
noised signal is then reconstructed using overlap and add.
The reduction is performed by scaling the spectrum using a
scaling function limited between g,,;,, (corresponding to —14
dB) and 1 and derived from the frequency dependent SNR.

4.1 Noise Reduction Gain Function
The scaling function is computed as a function of SNR and
given by

g =

SNR(f) is defined as a ratio between the current frame en-
ergy E(f) and the estimated noise energy E,(f), f being a
discrete frequency. The scaling function gy(f) is bounded by

ks SNR(f) +cs
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E, i, < (gS)2 < 1. The values of k, and ¢, are determined such
as (g,)° = E, for SNR =1, and (g,)* = 1 for SNR = 45. That
is, for SNR = 1 and lower, the noise reduction is limited to —
14 dB, and no noise suppression is performed if the ratio of
frame and noise energies is 45 or higher.

The noise energy is always estimated over critical bands,
ie. E,(f) is constant inside each critical band. The current
frame energy estimation is however dependent on the voicing
cut-off frequency — below that frequency, the energy is esti-
mated per frequency bin and above that frequency, the en-
ergy is estimated per critical band. Consequently, the gain
function varies with each frequency bin up to the cut-off fre-
quency, but it is constant over critical bands above that fre-
quency.

This new feature allows for preserving the energy at fre-
quencies near to harmonics preventing distortion while
strongly reducing the noise between the harmonics. In prac-
tice, this feature can be exploited only for voiced signals and,
depending on the frequency resolution of the frequency
analysis employed, for signals with relatively short pitch
period. However, these are precisely the signals where the
noise between harmonics is most perceptible.

An example of the effect on the lower part (0-1500 Hz)
of a high pitched speech spectrum can be seen in Figure 2 for
10 dB SNR car noise. In the upper plot, per critical band
processing of the whole spectrum for a noisy speech (pale
curve) is compared to the spectrum of the corresponding
original clean speech (dark curve). In the lower plot, the cut-
off frequency logic is used. It can be seen that the noise is
better suppressed in the valleys between the harmonics and
that they remain generally better preserved.
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Figure 2: Example of the effect of per bin processing in low
frequencies of high pitched voiced spectrum.

The actual scaling applied to the spectrum is performed
using a smoothed scaling gain updated in every frequency
analysis as

g(H=a(f) () +1-a() &)

where the smoothing factor « is inversely related to the gain
and given by

a(f)=1-g«(/)

That is, the smoothing is stronger for smaller gains g,. Tem-
poral smoothing of the gains prevents audible energy
oscillations, especially in higher part of the spectrum.
Controlling the smoothing using o prevents distortion in
high SNR speech segments preceded by low SNR frames, as
it is the case for voiced onsets for example, This is
illustrated in Figure 3. The upper plot shows about 1 second
of the original clean speech. In the 2™ plot, the smoothing is
done with constant value of o = 0.9. In the lower plot, a is
adaptive as described above.
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Figure 3: Example of the influence of adaptive gain scaling
on a voiced onset.

4.2 Voicing Cut-off Frequency Estimation

For the purpose of the described method, the estimation of
the cut-off frequency does not need a high precision. It is
based on the voicing parameter and given by

/:=0.00017118¢7772

where r, is the voicing. This exponential characteristics has
been found experimentally by first estimating the cut-off
frequency with high precision using similar methods as em-
ployed in low rate parametric speech coding. These methods
are based on successively high-pass filtering of the percep-
tually weighted speech signal and tracking the drop of the
normalized correlation value below a threshold. The cut-off
frequencies found were then plotted as a function of the
mean normalized correlation corresponding to each of them.
The dependency was close to an exponential and the charac-
teristics above have been found through least mean squares
approximation.

The cut-off frequency f. is bounded by
325 Hz < f.< 3700 Hz. The number of critical bands having
an upper frequency not exceeding f. is then processed by
frequency bin. The lower bound means that if f. is lower than
325 Hz, all the spectrum is processed by critical bands. The
upper bounds limits the per bin processing to the first 17
critical bands only.
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Interestingly, even if a Spectral Distortion (SD) measure
cannot properly assess all the advantages of the described
processing, the SD for the method when the cut-off fre-
quency estimation depends on the voicing has been lower
than for any fixed cut-off frequency, including the extreme
cases of all spectrum processed per frequency bin and all
spectrum processed per frequency band. The SD (evaluated
following critical bands) is shown in Figure 4. The upper
curve represents the SD as a function of a (fixed) number of
critical bands where per-bin NR is used (0 meaning that all
spectrum has been processed per critical band and 20 mean-
ing that first 20 critical bands have been all processed per
frequency bin.). It can be seen that the SD for all those fixed
cut-off frequencies is always above the SD when cut-off fre-
quency varies with the voicing (lower constant curve).
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Figure 4: Spectral distortion as a function of a fixed cut-off
frequency expressed in number of critical bands.

5. IMPLEMENTATION AND PERFORMANCE

The presented NR has been implemented as a part of VMR-
WB speech codec. VMR-WB can operate in one of 4
modes. Modes 0, 1 and 2 are specific to cdma2000 system
with mode 0 providing highest quality and mode 2 operating
at lowest average bit rate. Mode 3 is designed for direct,
transcoding free operation with 3GPP/ITU AMR-WB
speech coding standard [6].

In VMR-WRB, all internal processing including NR algo-
rithm is done at 12.8 kHz sampling frequency. The NR spec-
tral analysis uses windows length of 256 samples giving the
spectral resolution of 50 Hz. As a consequence, splitting the
spectrum for per-bin and per-band processing has been used
only for pitch frequencies higher than about 110 Hz.

The algorithm performance has been evaluated by a
formal MOS test against the reference NR system, a WB
extension of the EVRC NR algorithm. A preliminary version
of the VMR-WB codec has been used in the test, equipped
with the reference NR and with the NR presented in this pa-
per. The MOS test results are summarized in Figure 5 for 10
dB SNR car noise, 20 dB SNR car noise, 15 dB SNR street
noise and 20 dB SNR office noise. It is important to note that
in the 20 dB SNR cases, the bistreams have been corrupted
by 2% of erased frames and by 2% of frames suffering from
half-rate reduction (i.e. discarding 50% of selected bits).

It was possible to keep the complexity of the NR quite
low, given the fact that most of the used parameters are avail-

able in a speech codec. The per-frequency-bin processing
adds only a tiny increase because the noise estimation and
hence the denominator of the SNR computation, is still done
per critical band. The complexity (accounting for the cut-off
frequency estimation, NR and de-noised signal reconstruc-
tion) has been evaluated to about 2.2 WMOPS using an auto-
mated WMOPS counter.
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Figure 5: Comparison of MOS scores for VRM-WB codec,
mode 0, equipped with the reference and the tested NR.

6. CONCLUSION

We have presented a new noise reduction method for WB speech
coding. The main features consist in a NR processing depending on
a cut-off frequency and in an adaptive smoothing of the NR gain
function. The cut-off frequency is a function of the frame voicing.
Below the frequency, per-bin NR is performed. Above the fre-
quency, NR is done per critical band. It has been shown that this
approach gives better results than processing the whole spectrum in
the same way. The NR algorithm has been implemented in the
VMR-WB speech codec. Its performance has been shown to be
superior to the WB extension of the established EVRC NR refer-
ence.
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