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ABSTRACT

In this paper we present a new approach for robust transmis-
sion of waveform signals over noisy channels, where explicit
symbol-based redundancy is added to the source signal for
error protection by using an overcomplete block transform
prior to quantization. This approach is in contrast to com-
monly used schemes for joint source-channel coding which
employ binary channel encoding after the quantization stage.
At the decoder, a soft-input soft-output source decoding ap-
proach is applied, which allows us to efficiently exploit the
explicit redundancy introduced in the continuous amplitude
domain. The performance of the proposed approach is eval-
uated for different code constructions based on the DFT, the
DCT, and the discrete Hadamard transform.

1. INTRODUCTION

The classical strategy for efficient signal transmission over
noisy channels is to first compress the signals as best as pos-
sible using appropriate source coding techniques and then
to add explicit redundancy for error protection at the bi-
nary level. This is in accordance with Shannon’s source-
channel separation principle, which states that such systems
are asymptotically optimal. In recent years, however, com-
bined source-channel coding techniques and soft-bit decod-
ing algorithms have become an interesting alternative, espe-
cially for delay- or complexity constrained systems. One
subclass of these approaches is represented by a joint allo-
cation of source and channel coding rates such that the re-
construction error at the decoder is minimized [1]. Often
these techniques are used in combination with state-of-the-
art source coders and elaborate error protection schemes for
the highly sensitive source-encoded bitstreams (e.g. [2, 3]).
These methods provide excellent results for moderately dis-
torted channels, however, especially for low channel signal-
to-noise ratios (SNRs) their performance highly depends on
the properties of the used channel codes. Another subclass of
joint source-channel coding is given by joint source-channel
decoding, where residual source redundancy is exploited for
additional error protection at the decoder. Some approaches
even do not use binary channel codes at all and design the
source encoder such that the residual index-based redun-
dancy in the resulting bitstream alone is sufficient to provide
reasonable error protection at the decoder (e.g. [4,5]). These
methods have less encoding delay and complexity, and for
very low channel SNRs, they often yield similar or better per-
formance than the combination of strong source and channel
encoding.

In this paper, we follow the idea of [6] and move the introduc-
tion of redundancy for error protection prior to the quantiza-
tion stage of the source encoder. The explicit redundancy is
inserted by applying especially structured overcomplete sig-
nal expansions to nonoverlapping blocks of input samples,
resulting in real-valued block channel codes. For the code
design, we study construction principles based on the dis-
crete Fourier transform (DFT) leading to a real-valued BCH
code, the discrete cosine transform (DCT), and the discrete
Hadamard transform (DHT). The novelty of our approach
lies mainly in the decoding process, which is carried out in
three stages. First, the source redundancy due to the index
correlation introduced by the overcomplete expansion is ex-
ploited for soft-bit source decoding, taking the source sym-
bol transition probabilities into account. Then, a real-valued
syndrome decoding for the real-valued block code is per-
formed under consideration of the reliability information that
is available from the previous source decoding stage. Finally,
the waveform signal is reconstructed through the application
of the pseudo-inverse of the overcomplete block transform.
The performance of the proposed combined source/channel
coding and decoding approach is studied for signal transmis-
sion over AWGN channels.

2. PROPOSED TRANSMISSION SYSTEM

The block diagram of the overall transmission system is de-
picted in Figure 1. The vector U = [U1,U2, . . . ,Uk, . . . ] rep-
resents the real-valued source symbols Uk ∈ IR. In order
to obtain an overcomplete frame expansion, similar to [7],
nonoverlapping blocks of K symbols from the sequence U
are transformed using the frame operator G of dimension
N ×K, where N > K. In analogy with the theory of real-
valued BCH-codes [8], the matrix G can be interpreted as a
generator matrix of the underlying channel code with a code
rate of Rc = K/N. In accordance with [6, 9], the matrix G is
defined as

G =

√
N
K

TH
N PTK . (1)

Herein, TN and TK denote unitary transform matrices of size
N ×N and K ×K, respectively. The matrix P ∈ IRN×K has
nonzero elements only on two diagonals, denoted in the fol-
lowing by du and dl , respectively, and serves to introduce
zeros into the data sequences. du is the upper diagonal start-
ing in the upper left corner of P, and dl is the lower diagonal
that ends in the lower right corner of P. The definitions de-
pend on K being even or odd. For even K, the upper and
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Figure 1: Model of the transmission system

lower diagonal vectors are given by

du = [ 1, . . . ,1︸ ︷︷ ︸
K/2 elements

, 1√
2
, 0, . . . ,0],

dl = [ 0, . . . ,0︸ ︷︷ ︸
K/2 elements

, 1√
2
, 1, . . . ,1].

For odd K we have

du = [ 1, . . . ,1︸ ︷︷ ︸
(K+1)/2 elements

,0, . . . ,0],

dl = [ 0, . . . ,0︸ ︷︷ ︸
(K+1)/2 elements

,1, . . . ,1].

The application of the generator matrix G in (1) can be
viewed as transforming K input symbols into K transform
coefficients using transform TK , inserting zeros into the cen-
ter of the coefficient vector using P, and carrying out a sub-
sequent transform back to the original domain using TN to
obtain the symbol vector Y . The number of introduced zeros
for every K input symbols is given by N −K −1 for even K
and N−K zeros for odd K, respectively. In addition, for even
K, one value is scaled by the factor 1/

√
2 and repeated. Thus,

for both even and odd K, the number of redundant symbols
is given by L = N −K.

The vector Y is scalar quantized with M-bit quantizers,
where we obtain the index vector I = [I1, I2, . . . , Ik, . . . ] with
Ik ∈ I , I = {0,1, . . . ,2M−1}. I may also be interpreted as
a binary sequence Ibin = [i1,1, i1,2, . . . , ik,�, . . . ] with ik,� denot-
ing the �-th bit of the index Ik. Since the overcomplete ex-
pansion G adds redundancy to the data vector U the indices
Ik show dependencies, which will in the following be mod-
eled as a first-order stationary Gauss-Markov process with
transition probabilities P(Ik =λ | Ik−1 =µ) with µ,λ ∈ I .

The sequence I is transmitted over an AWGN channel with
noise variance σ2

e = N0
2Es

, where coherently detected binary-
phase shift keying is assumed for the modulation. N0 denotes
the one-sided power spectral density and Es is the transmit
energy per codebit. Then the conditional p.d.f. of a received
soft-bit îk,� is Gaussian-distributed and can be written as

p(îk,� | ik,�) =
1√

2πσe
· exp

(− 1
2σ2

e
(îk,�− īk,�)2) (2)

with īk,� = 1−2 · ik,�.

3. DECODER STRUCTURE

At the decoder, first a soft-input soft-output source decoder
(SISO) is applied to the received soft-bit vector Î . The SISO

decoder issues reliability information for the source hypothe-
ses Ik = λ at the output of the decoder in form of a posteri-
ori probabilities (APPs). Here an index-based version of the
classical BCJR algorithm [10] with the states Ik = λ may
be used as SISO decoder. However, for the sake of sim-
plicity and in order to obtain a smaller system latency we
restrict ourselves to just the forward recursion of the BCJR
algorithm, where the APPs at the output of the SISO de-
coder P(Ik = λ | Î k

0 ) are only conditioned on the received
soft-bit vector Î k

0 = [î1,1, î1,2, . . . , îk,M] up to the time instant
k. By additionally considering the a priori index correlation
P(Ik = λ | Ik−1 = µ) due to the outer expansion for error re-
silience, the decoding rule can be written as

P(Ik = λ | Î k
0 ) = ck p(Îk | Ik = λ )

·
2M−1

∑
µ=0

P(Ik = λ | Ik−1 = µ)P(Ik−1 = µ | Î k−1
0 ) (3)

for λ = 0,1, . . . ,2M − 1 with the constant ck. Since the
considered AWGN channel is memoryless the channel term
p(Îk | Ik) can be obtained from (2) according to

p(Îk | Ik) =
M−1

∏
�=0

p(îk,� | ik,�). (4)

Using the obtained APPs from (3) we perform the following
MAP decoding at the decoder output:

λmap = arg max
λ

P(Ik = λ | Î k
0 ).

Given λmap, the corresponding element Ŷk of the sequence
Ŷ in Figure 1 is obtained according to Ŷk = yλ , where yλ
denotes the quantizer reconstruction level corresponding to
the index λmap. Besides, the corresponding APP P(Ik =
λmap | Î k

0 ) represents an element Pk,map of the probability se-
quence Pmap.

For the further symbol reconstruction, we first construct a
matrix TL×N which plays the role of a parity check matrix.
For odd K, TL×N is the submatrix of TN that corresponds to
the L inserted zeros, such that

TL×N ·yN=0L (5)

where yN is a length-N block of the original symbol se-
quence, and 0L is a vector of L zeros. For even K, the first
L − 1 rows of TL×N consist of the L − 1 rows of TN that
correspond to the inserted zeros. The L-th row is the differ-
ence of the two rows of TN that correspond to the repeated
symbol, so that (5) is again satisfied.
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Now we consider the vector

s = TL×N · ŷN , (6)

where ŷN denotes a block of N elements taken from Ŷ . The
vector s is called the syndrome and has a similar function
as the syndrome in classical BCH codes over finite fields.
However, in the method proposed in this paper we also have
to take the effect of quantization into account. There are two
points to mention:

1. In the presence of quantization, but without transmission
errors, the vector s will, in general, be nonzero. Then
the knowledge that the original symbols before quantiza-
tion satisfy (5) helps to reduce the effects of quantization
when reconstructing the final output Û [6]. The case of
no transmission errors occurs when we already have per-
fect error correction by the SISO source decoder on the
basis of the index correlation in I .

2. In the presence of both quantization and transmission er-
rors, the vector s will be significantly different from zero.
We can then use the knowledge that TL×N ·yN = 0L in
order to simultaneously correct transmission errors and
reduce the effects of quantization.

The decoding strategy is essentially analog to the decoding
of binary block codes. We define the corrected symbols as

ỹ = ŷN + ê (7)

and demand that

TL×N · ỹ = TL×N · [ŷN + ê] = 0L. (8)

The question is then how to find the correction term ê that
leads to the best estimate ỹ for the true vector yN . Because
of N > L the linear system (8) is underdetermined and has
infinitely many solutions for ê.

For estimating ê subject to (8) from the information that is
available at the output of the SISO decoder, we need the con-
ditional p.d.f. p(ê|σ2

e ,Pmap, ŷN). This density will, in gen-
eral, be non-Gaussian. However, for the reason of simplicity
and in order to obtain a linear estimator, we approximate this
p.d.f by a Gaussian distribution. Moreover, we assume that
the p.d.f. is independent of ŷN and that all components êi of
ê have zero mean and are mutually uncorrelated. The vari-
ances of the components êi, denoted by λi, are modeled to be
dependent on the reliability information Pmap,i and the nor-
malized channel noise variance σ2

e . Under the assumptions
made above, the conditional p.d.f. of the correction term ê is
given by

p(ê|σ2
e ,Pmap) =

(
(2π)N

N

∏
i=1

λi
)− 1

2 exp(−1
2
êT Λ−1ê) (9)

where
Λ = diag[λ1,λ2, . . . ,λN ], (10)

i = 1,2, . . . ,N. The quantities λi denote the variance of the
true errors ei = ŷN,i − yN,i and are approximated as λ̃i =
λ̃i(Pmap,i,σ2

e ) in the following.

The relationship between λ̃i and the terms Pmap,i and σ2
e was

found experimentally and approximated by a polynomial of

the form

λi(Pmap,i,σ2
e ) =

κ

∑
k=0

αkPk
map,i (11)

where the coefficients αk depend on σ2
e . To determine the

coefficients αk, trials were made where the mean squared er-
ror E{|ŷi − yi|2} was collected for Pmap,i lying in intervals
[(q− 1)/Q, q/Q], q = 1,2, . . . ,Q with Q = 20 and for var-
ious fixed values of σ2

e . In a second step, a least-squares
polynomial fit of the collected data was carried out to deter-
mine the coefficient sets αk, k = 0,1, . . . ,κ for each value of
σ2

e , where an order κ =8 for the approximation polynomial
was chosen.

Maximizing (9) through the choice of ê is equivalent to mini-
mizing êT Λ−1ê, so that we obtain the following optimization
problem:

minimize êT Λ−1ê
subject to TL×N · [ŷN + ê] = 0L.

(12)

The solution can be found via the Lagrange multiplier
method. We then have to minimize

êT Λ−1ê+ µT (TL×N · [ŷN + ê]) (13)

through the choice of ê and vector µ . The solution to this
problem is given by

[
ê
µ

]
= −

[
2Λ−1 TT

L×N
TL×N 0L×L

]−1 [
0

TL×N · ŷN

]
, (14)

and after partitioned inversion, we obtain

ê = −ΛTT
L×N [TL×NΛTT

L×N ]−1 TL×N · ŷN . (15)

Given ê, we determine ỹ from (7). A reconstructed block û
of the sequence Û at the output of the reconstruction stage
is finally obtained as

û = G† ỹ (16)

where G† denotes the pseudo-inverse of G.

It is worth to mention that the correction term ê only has an
influence on the final output û when Λ is not a multiple of
the identity matrix, because due to the orthogonality of TN
and the given construction of P, we have G†TT

L×N = 0K×L.

4. SIMULATION RESULTS

In order to verify the performance of the resulting transmis-
sion system simulations were carried out for an AR(1) input
process U with correlation coefficient a and a block length
of 160000 source symbols. The frame expansion uses the
parameters K = 16 and N = 32, and the subsequent scalar
uniform quantization has a resolution of M =5 bit. We em-
ploy different unitary transforms T, namely, the DFT, the
DCT-II, and the DHT. The results are displayed in Figures 2
and 3 where the reconstruction SNR at the decoder output is
plotted over the channel parameters Eb/N0 with Eb = Es/R.
The overall code rate R is given as R = K/N.

We can see from Figure 2, which shows the result for an un-
correlated input process with a = 0, that especially for the
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Figure 2: Reconstruction SNR for an i.i.d. input process (Pa-
rameters: K = 16, N = 32, M = 5 bit, block length 80000
source symbols)

DFT a strong gain is obtained when SISO source decoding is
additionally used prior to the decoding of the overcomplete
expansion. This is due to the fact that only for the DFT a rea-
sonable amount of index correlation is present after the over-
complete expansion if the input process U is uncorrelated,
which can be verified from the entropies listed in Table 1.
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Figure 3: Reconstruction SNR for a strongly correlated
AR(1) input process with a = 0.9 (Parameters: K = 16,
N = 32, M = 5 bit, block length 80000 source symbols)

Figure 3 depicts the results for a strongly correlated AR(1)
process with a = 0.9. Compared to Figure 2, here the SNR
gain by using additional SISO source decoding is higher due
to the source symbol correlation already inherent in the input
sequence U . Here, the DFT and also the DCT-II outperform
the DHT.

5. CONCLUSIONS

In this paper we have extended the syndrome-based decoding
of a real-valued block channel code based on overcomplete
expansions by an additional soft-input soft-output (SISO)
source decoding stage. This SISO decoder is capable of ex-
ploiting the source index correlation introduced by the over-
complete expansion for additional error protection. Further-
more, we have shown that the reliability information for the
estimated source symbols at the output of the SISO decoder

Transform a H(Ik) H(Ik | Ik−1)

0 3.680 3.341
DFT

0.9 3.680 2.207

0 3.764 3.762
DCT-II

0.9 3.908 2.560

0 3.753 3.752
DHT

0.9 3.817 2.857

Table 1: Measured entropies H(Ik) and H(Ik | Ik−1) after
frame expansion with K = 16, N = 32 and quantization with
M = 5 bits for an AR(1) process with correlation coefficient
a and different transforms

can be used for improving the result of the subsequent syn-
drome decoding. When using the DFT as the underlying
transform for the overcomplete expansion a significant SNR
gain is obtained for the reconstructed sequence at the decoder
output even if the source symbols are uncorrelated.
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