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ABSTRACT

In this paper, we propose a framework for analysing the conver-
gence behavior of an affine projection based algorithm, using a
polyphase filterbank model of the adaptive filter. We have recently
introduced a low computation-cost version of the Fast Affine Pro-
jection Algorithm (FAPA) that combines FAPA with Partial Filter
Update (PFU-FAPA). It is shown in this paper that the polyphase
model of PFU-FAPA does not represent a perfect reconstruction
system. This is in contrast to the sequential update LMS, which
is based on a similar partial filter update method, and can be mod-
eled by a perfect reconstruction polyphase filterbank. Hence, in
PFU-FAPA, as the decimation rate of the partial update algorithm
increases, distortion of the output signal increases. However, as the
polyphase model shows, the distortion is only due to the effect of
partial update on the autocorrelation estimation, and is negligible at
low or modest decimation rates.

1. INTRODUCTION

The popular Normalized Least Square algorithm (NLMS) offers a
simple and effective method for adaptive noise and echo cancella-
tion. However, because of the large eigenvalue spread for colored
input signals (such as the subband signals in oversampled subband
adaptive filters), the convergence of the NLMS algorithm can be
very slow. Thus, the Affine Projection Algorithm (APA) is em-
ployed in [1] as a superior adaptation technique for providing better
convergence behavior than the NLMS algorithm, while at the same
time avoiding the high computation cost and instability associated
with the Recursive Least Squares (RLS) algorithm. Nevertheless,
for real-time implementation on very low resource platforms, only
very low affine projection orders (2 or 3) are generally practical.

Recently, fast versions of APA (FAPA) have been introduced
[2, 3] that approximate the original APA without considerable per-
formance loss. To be able to employ FAPA on low-resource plat-
forms, we recently proposed to further reduce the complexity of
FAPA by employing partial filter updates in FAPA [4]. The new
algorithm was evaluated in a subband acoustic echo canceller appli-
cation.

In this paper, motivated by the research presented in [5], a
polyphase filterbank representation is formulated for the Partial Fil-
ter Update FAPA (PFU-FAPA) initially proposed in [4]. In [6],
polyphase models based on delay-chain perfect reconstruction (PR)
filterbanks are presented for different classes of partial update LMS
algorithm. In this research we expand the models to include PFU-
FAPA. We show that the polyphase filterbank model of the “trans-
formed” version of the adaptive filter in PFU-FAPA (the “fast”
adaptive coefficient vector in [2]) constitutes a PR filterbank. How-
ever, we also show that the polyphase filterbank model of the auto-
correlation estimation part in PFU-FAPA is not a PR system. This
justifies the results already reported in [4].

This paper is organized as follows. Section 2 describes the
PFU-FAPA. In Section 3 a polyphase model for the PFU-FAPA is
proposed, and discussions are presented in Section 4. Throughout
this paper, L denotes the adaptive filter length, N denotes the affine
order, and D denotes the decimation rate of the partial filter update.
Mathematical notations and definitions are based heavily on [2].

2. COMBINATION OF FAPA AND PARTIAL UPDATE
ALGORITHM

The time-domain FAPA and PFU-FAPA are summarized as follows.
Generalization for complex subbands (e.g. in oversampled subband
adaptive filters) is straight-forward, and is omitted here for simplic-

ity.

2.1 FAPA

The following description of FAPA is based on [2] and [3], where
the inversion of the autocorrelation matrix is formulated as solving
a system of equations (see Eq. (5) below).

Initialization: assume, for n < 0,x, =y, =0, h, =0, E, =0',
Gy =0, Ry = XX, =0+08L frrp = [6,0],0.7<p <1, and
P, =b/s.

Then, at each sample n > 0:

ixx,n = ixx.nfl +XnQn _xn—LQn—L (1)
én = n 712&,,,_1 (2)
e, = én — ,lli,{cx,nE,,,l (3)
update R, USing ﬁrx,n (4)
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In the above, f, is the L x 1 “transformed” adaptive filter coeffi-
cients, £, is a N x 1 vector consisting of a sum of the fast normal-
ized residual echo g, [2], Ey_, , is the last element of E,,, E, is a
vector consisting of the uppermost N — 1 elements of E,,, x,, is the
L x 1 excitation signal vector, y, is the reference signal, e, is the
error signal, &, = [xn7...,xn7N+1]t, b=11,0]", X, is the L x N
excitation signal matrix, I is the identity matrix, and 0 is the reg-
ularization factor. Note, 7y, , in Eq. (3) has the same definition as
in [2], and is simply the N — 1 lower elements of 7y ,. Also, in
Eq. (4), R, is updated simply by replacing the first row and col-
umn with the elements of 7, ,, and the bottom (N —1) x (N —1)
submatrix is replaced with the top (N — 1) x (N — 1) submatrix of
R, _,. The system of equations in Eq. (5) can be solved efficiently
by performing one Gauss-Seidel (GS) iteration per each iteration of
the FAPA as suggested in [3].

2.2 The PFU-FAPA Algorithm

The Partial Filter Update (PFU) method [4] aims to reduce the com-
putation requirement of FAPA without sacrificing too much of the
system performance. It is similar in concept to the Sequential Least
Mean Square (S-LMS) algorithm in [7], and is implemented as fol-
lows. Let D be a positive integer, D > 1 and L mod D = 0. Then, the
updating of transformed filter coefficients /, (Eq. (8)) is modified
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to
&n = ﬁn_1+“gn,(N71)EN—l,n (9)
where
I S - t
S L RTN A
- _J x, ifnmodD=0
=190 otherwise

Also, @&, in Eq. (1) is replaced with &, = [)Z,,,...,)En_NH]t. As
a result, when D > 1, only every D-th element of in and 7y, are
updated at a time. R, is then updated at every D-th frame (i.e.
executing Eq. (4) only when n mod D = 0), which is also when 7 ,
is fully updated. When D = 1, the algorithm reverts to the original
FAPA method.

3. POLYPHASE MODEL FOR PFU-FAPA USING A
DELAY CHAIN FILTERBANK

In [6], it is shown that the PFU method in the S-LMS algorithm
(described in [7]) can be seen as a polyphase implementation of
LMS where only one polyphase component is updated at a time.
It can be seen clearly that a similar polyphase analysis will also
apply here for PFU-FAPA. However, one significant difference here
is that the partial update is applied separately to two different parts
of the adaptive filter — i.e. the transformed filter coefficients 4, and
the estimated autocorrelation vector 7yy,. In contrast, the partial
update in S-LMS is applied directly to the adaptive filter (%, ) itself.
Hence, we intend to show in the following that the partial update
method in PFU-FAPA is not modelled by a Perfect Reconstruction
(PR) filterbank as noted in [6] for S-LMS. Also, note that the model
derived here is general enough not to rely on the particular method
used in Eq. (5) or finding the regularization factor &, so long as the
method does not alter the algorithm as described in Section 2.
To derive the polyphase model, let

~t
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it
[
A, =
~t :
%y 142
~ - - t .
where &, = [xnil e ,xn7N+J (the lower N — 1 elements of &),
i.e. . . .
e ) Xn-N+1
n—2 Xn—3 T Xn—N
An = . .
XL *n—L-1 Xn—L—N+2

Then, it can be easily seen that
Zxx,n = Ei'l A,

and, assuming t = 1 from now on for simplicity,
€n :ynfﬁ’l <2n—1 +AnEn_1> (10)

The adaptive filter as described by Eq. (10) is illustrated in
Figure 1. Note that the matrix A, is “adaptive” (as shown with
the dashed arrow in the figure) only in the sense that it contains the
time-varying elements of the input signal x;,.

Next, we separate x;, A,E, | into N — 1 “filters” (i.e. “filter-
ing” of x, with A,)) and a sum of N — 1 multiplications (i.e. vector
multiplication of (x}, A,) with EF 1)- In other words, we treat each

column of A, independently, so that

-’,CilAn :-’,Cil [ An.O"An,l“‘”An,NfZ ]
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Figure 2: Separating A, into N — 1 filters

Figure 2 shows the adaptive filter with A, treated as N — 1 separate
filters. The output of each of the N — 1 filters, 4, ., is an estimation

Ap.i»
of the autocorrelation at time »n, 7, ;, with (i+1) lag and 0 <i <
N —2.Note, E,,_, ; denotes the i-th element of E, _, .

For D =1, Figure 1 or Figure 2 will be sufficient in describing
the adaptive filter. However, for D > 1, we will take the polyphase
approach to describe the partial filter update method in PFU-FAPA.
The polyphase model derived for the S-LMS method in [6] can be
applied equivalently to the transformed adaptive filter %, in PFU-
FAPA. This is described later in this section. First, for PFU-FAPA
we need to additionally derive the polyphase model for the auto-
correlation vector 7. ,. In the descriptions to follow, we assume
D = 2. Extension to D > 2 is straight-forward.

For example, assume L = N = 4 for simplicity (in practice L >>
N). At n =0, we have

A=

P T IR T IR ST IR 7

-1
-2
-3
—4

Then for the autocorrelation vector we have 7

0 = XA, thus,

foo = [ X 1 X, x3]A

= [ (prptagxy) (prp+x vy

(x4 +x_3x_¢) }

Next,atn =1, wehave 7 | = )g’l A |, where

X 0 x,
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Figure 3: Cascading the Adaptive Filter with a PR Delay Chain
Filterbank - Step |

Thus,

Fog = [ Gexotx_jxy)  (xx_p+x_5x )

(rpx_p+x_gx_y) |
Similarly, at n = 2, Fron = x5 A,, so we have

Fon = [ oxptx_jx5) (6 +xx,)

(x5 +x 1x ) |

As shown in Figure 2, we can treat each element of 7y, inde-
pendently (i.e. 7, ;, 0 <i <N —2) as the output of the filters 4, ;.
Then, it can be seen from the above example that the effect of the
PFU algorithm on the autocorrelation vector is determined by the
modification to the individual filters 4, ;. In particular, there are
two modifications to 4, ; due to partial update — first the use of a
decimated version of x,,, and second the update of the “filter taps”

in each A, ;- These two modifications are key to the construction of

the polyphase model as described in the following.

For the polyphase model, we first cascade the adaptive filter
with a PR delay chain filterbank as similarly done in [6]. This is
illustrated in Figure 3. Next, we move the multiply-add operations
with anlii to the subband by swapping the decimation-by-two op-
eration with the multiply-add operation, and adding the appropriate
expansion-by-two operation, as shown in Figure 4.

Then, the equivalent polyphase model of the adaptive filter is
shown in Figure 5. The figure depicts the adaptive filter without
PFU, and all the polyphase components are being jointly updated.
Since D = 2 in our example, there are only two polyphase compo-
nents shown in the figure.

When the PFU method as described in Section 2 is employed,
the modifications to the polyphase model are shown in Figure 6 and
Figure 7. Figure 6 shows the polyphase model when the time index,
n, is even, and Figure 7 shows the corresponding model when » is
odd. Essentially, the transformed filter coefficients /4, are partially
updated in a simAilar way as in S-LMS —i.e. while all the polyphase
components of 4, are used for filtering, only one of them is up-
dated at a time (see Eq. (9)), as shown with the dashed arrows in
the figures.

On the other hand, the modification to 4,; due to partial up-

date has two effects on the polyphase model, as shown in the above
example. The first is the decimation effect by a factor of D, which
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Figure 4: Cascading the Adaptive Filter with a PR Delay Chain
Filterbank - Step 11

means only one polyphase component of 4, ; is used at a time for

filtering. In the figures, the polyphase components that are not used
at time n (n even or odd) are shaded out. The second effect is
due to the updating of the elements of 4, ;, where the zero coef-
ficients are not confined to specific “filter taps” of 4, ;,
positions depending on the value of X;,. This means that different
polyphase components of 4, ; are updated and used for filtering at

but change

different times. Specifically, as shown in Figure 6, when 7 is even,
only the first polyphase component of 4, ; (i.e. 4,;) is updated

and used for filtering in the even polyphase branch, while in the
odd polyphase branch, only the second polyphase component (i.e.
4, ;1) is used for filtering (but not updated). Conversely, when n is

odd, only the second polyphase component is updated and used for
filtering in the even polyphase branch, while only the first polyphase
component (which has the same values as in #n — 1) is used for fil-
tering in the odd polyphase branch, as shown in Figure 7. Similarly,
for D > 2, in the even polyphase branch, the polyphase components
of An’i are used for filtering one at a time in ascending order (i.e.

starting with the first polyphase component at n = 0, then the sec-
ond component at » = 1, the third component at n = 2 ... etc. until
n mod D = 0, when the first component is used again, and so on),
while in the odd polyphase branch, the polyphase components of
4, ; are used for filtering one at a time in descending order. At each
time n, only the polyphase component that is being used for filtering
in the even polyphase branch is updated. Thus this completes the
polyphase model for PFU-FAPA.

4. DISCUSSION

In this work, a polyphase filterbank model of PFU-FAPA is derived
and presented. As shown clearly in Figure 6 and Figure 7, a major
difference between PFU-FAPA and S-LMS is the effect of the par-
tial update method on part of the adaptive filter — in particular, the
estimated autocorrelation vector 7y ,. Unlike the transformed fil-

ter itj, the partial update method does not have a PR effect on 7y
because only one polyphase component of 4, ; is used for filtering

at a time. However, it is also different from a simple decimation
of 4, ; because, over time, none of its polyphase component is ig-

nored (i.e. for n > D, every component will have been updated
and used for filtering at least once). Nevertheless, the estimation of
the autocorrelation vector will be worse as the value of D increases
— because of first the decimation effect at each n (i.e. only one
polyphase component is used for filtering at a time), and second the
slower update rate for 4, ; (i.e. only one polyphase component is

updated at a time), especially when non-stationary signals are used.
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Figure 5: Polyphase Representation of Adaptive Filter using a PR
Delay Chain Filterbank - Without Partial Filter Update
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Figure 6: Polyphase Representation of Adaptive Filter using a PR
Delay Chain Filterbank - With Partial Filter Update and n is even
(shaded components are not used for filtering)
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Figure 7: Polyphase Representation of Adaptive Filter using a PR
Delay Chain Filterbank - With Partial Filter Update and n is odd
(shaded components are not used for filtering)

This is consistent with the results presented in [4] for PFU-FAPA.
We expect this polyphase approach should provide the groundwork
for further analysis of the relationship between D and the filter per-
formance in PFU-FAPA or other similar partial update methods for
adaptive filters.
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