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ABSTRACT

In this paper, blind separation and deconvolution (BSD)
problem with binaural-sound mixtures is addressed. We
have proposed two-stage blind separation and deconvolution
algorithm, which consists of Single-Input Multiple-Output
(SIMO)-model-based ICA (SIMO-ICA) and blind multichan-
nel inverse filtering. In the previous report, we carried out
simulations in the artificial mixing system and only showed
that the proposed BSD can work theoretically. In order to
evaluate the proposed method in more actual situations, we
carried out BSD experiments assuming that speech sources
are convolved with head related transfer functions (HRTFs).
The simulation results reveal that the proposed BSD method
can be effective in the separation and deconvolution even
with binaural-sound mixtures.

1. INTRODUCTION

Blind separation and deconvolution (BSD) of sources is an
approach taken to estimate original source signals using only
the information of mixed signals observed in each input chan-
nel. For the BSD based on independent component analysis
(ICA), various methods have been proposed to deal with
the separation and deconvolution for the convolutive mix-
ture of independently, identically distributed (i.i.d.) source
signals [2, 3]. These ICA-based BSD methods often whiten
the separated signals, because they use the assumption of
temporally independency of the signals. Therefore they can-
not be applied to acoustic signals which is colored generally.
We have proposed a novel BSD approach [1] that combines
information-geometry theory and multichannel signal pro-
cessing. In this approach, the BSD problem is resolved into
two stages: new blind separation technique using a Single-
Input Multiple-Output (SIMO)-model-based ICA (SIMO-
ICA) and the deconvolution in the SIMO-model framework.

BSD for colored sources is a very hard problem. Al-
though common room reverberation is generally regarded as
an FIR filter with thousands of taps, existing BSD methods
can deal with only few-tap transfer channels. Consequently,
conventional BSD techniques are demonstrated only in the
case of artificial transfer functions. In the previous report, we
also dealt with artificial transfer functions, and only showed
that the proposed BSD method can work theoretically.

In this paper, we mainly address the BSD problem with
head related transfer function (HRTF) [4] as a more actual
transfer channel. HRTF is relatively shorter among real
acoustical channels (see Fig. 1). Also the left ear channel and
the right ear channel are very distinct from each other. These
properties are very favorable to BSD. The sound convolved
with HRTF is generally called binaural sound, which plays
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Figure 1: Examples of HRTFs used in this paper. These are
down-sampled HRTFs from 44100 Hz to 8000 Hz.

the main role in human hearing, and we attempt separation
and deconvolution of binaural-sound mixtures. We carry out
the simulation using the HRTFs obtained from the CIPIC
database [5]. Simulation results show the effectiveness of the
proposed BSD method for binaural-sound mixtures.

2. MIXING PROCESS IN BINAURAL-SOUND
MIXTURES AND CONVENTIONAL BSD

2.1 Mixing process

In this study, mixing process is assumed as the binaural-
sound mixtures which are described as Fig. 2. These cor-
respond to special cases of convolutive mixtures with two
microphones (left ear and right ear) and two sound sources.
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Figure 2: Illustration of binaural-sound mixtures.

The observed signals are expressed as

x(t) =

N−1X
n=0

a(n)s(t− n) = A(z)s(t), (1)

where s(t) = [s1(t), s2(t)]
T is the source signal vector, and

x(t) = [x1(t), x2(t)]
T is the observed signal vector. Also,

a(n) is the mixing filter matrix with the length of N , and
A(z) is the z-transform of a(n); these are given as

a(n) = [akl(n)]kl, (2)

A(z) = [Akl(z)]kl =

"
N−1X
n=0

akl(n)z−n

#
kl

, (3)

where z−1 is used as the unit-delay operator, i.e., z−n ·x(t) =
x(t − n), akl(n) is the HRTF in the direction of the l-th
sound source with the k-th ear (1: left ear, 2: right ear).
[X]ij denotes the matrix which includes the element X in
the i-th row and the j-th column. Since we make a free-field
assumption, akl(n) represents only diffraction on the head,
reflection on the torso and effects of the earlobe. In general,
the binaural system has the following notable features.
(a) These channels are very distinct from each other.
(b) The length of the a(n), N , is relatively short rather

than that of a common room impulse response. Typical
length of a(n) in 8 kHz sampling is less than 15 taps as
can be seen in Fig. 1.

Owing to the attractive characteristics, we can speculate that
BSD can be applied to the binaural-mixtures problem.

2.2 Conventional BSD

In the time-domain ICA (TDICA), the separated signal
y(t) = [y1(t), y2(t)]

T is expressed as

y(t) =

D−1X
n=0

w(n)x(t− n), (4)

where w(n) is the separation filter matrix, and D is the filter
length of w(n). In the ICA-based BSD, Amari [2] proposed
the holonomic TDICA algorithm which optimizes the sepa-
ration filter by minimizing the Kullback-Leibler divergence
between the joint probability density function (PDF) of y(t)
and the product of marginal PDFs of yl(t). The iterative
learning rule is given by

w[j+1](n)

= w[j](n) + η

D−1X
d=0

(
Iδ(n− d)

−
D
'(y[j](t))y[j](t− n + d)T

E
t

)
·w[j](d), (5)
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Figure 3: Example of input and output relations in SIMO-
ICA used in binaural separation.

where η is the step-size parameter, the superscript [j] is used
to express the value of the j-th step in the iterations, 〈·〉t
denotes the time-averaging operator, and I is the identity
matrix. δ(n) is a delta function, where δ(0) = 1 and δ(n) =
0 (n 6= 0). '(·) is the nonlinear vector function. This BSD
based on ICA, however, might whiten the separate signals.
Therefore it cannot be applied to colored sources although
most of audio signals are colored.

3. TWO-STAGE BSD FOR BINAURAL-SOUND
MIXTURES

In this section, we explain our proposed two-stage BSD al-
gorithm [1] combining SIMO-ICA and blind multichannel
inverse filtering, which is specified for binaural-sound BSD.
In the proposed method, the separation and deconvolution
procedures are performed under the following assumptions.

(A1) The source signals, s1(t) and s2(t), are mutually in-
dependent, and unknown.

(A2) Each source signal is temporally correlated (colored),
i.e., 


sl(t)sl(t− n)
�

t

sl(t)2

�
t

6= δ(n) (l = 1, 2), (6)

but its coloration characteristics are unknown.
(A3) The mixing system A(z) is unknown, and probably

has the nonminimum phase property. However, every
column of A(z) is guaranteed not to have any common
zeros in the z-plane.

(A4) The order of the mixing system, N , is unknown.

These are reasonable assumptions in binaural-sound mix-
tures driven by audio signals. Details of the process using
the proposed algorithm are as follows.

3.1 First stage: SIMO-ICA for source separation

In this stage, a blind separation method using SIMO-ICA in
binaural system is conducted. In the binaural system (see
Fig. 3) SIMO-ICA consists of an ICA part and a fidelity
controller, and the ICA runs under fidelity control of the
entire system. The separated signals of the ICA in SIMO-
ICA are defined by

yICA(t) =

�
yICA
1 (t)

yICA
2 (t)

�
=

D−1X
n=0

wICA(n)x(t− n), (7)

where wICA(n) is the separation filter matrix in the ICA.
Regarding the fidelity controller, we calculate the following
signal vector, in which the all elements are to be mutually
independent,

yFC(t) = x(t−D/2)− yICA(t). (8)
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Hereafter, we regard yFC(t) as an output of a virtual ICA,
and define its virtual separation filter matrix as

wFC(n) = Iδ(n− D

2
)−wICA(n). (9)

From (9) we can rewrite (8) as

yFC(t) =

D−1X
n=0

wFC(n) · x(t− n). (10)

The reason why we use the word “virtual” here is that fidelity
controller does not have own separation filters unlike the
ICA.

In order to make yICA(t) independent and simultane-
ously yFC(t) independent, the natural gradient [2] of KLD
of (10) with respect to wICA(n) should be added to the iter-
ative learning rule of the separation filter in ICA. The new
iterative learning rule of the ICA in SIMO-ICA is given as

w[j+1 ]
ICA (n)

= w[j ]
ICA(n)− α

D−1X
d=0

"(
off-diag

D
'
�
y[j]

ICA(t)
�

y[j]
ICA(t− n + d)T

E
t

)
·w[j ]

ICA(d)

−
(

off-diag
D
'
�
x(t− D

2
)− y[j]

ICA(t)
�

·�x(t− n + d− D

2
)− y[j]

ICA(t− n + d)T
�E

t

)
·�Iδ(d− D

2
)−w[j]

ICA(d)
�#

, (11)

where α is a step-size parameter. Under (11) the separated
signals converge on the following solutions;�

yICA
1 (t)

yICA
2 (t)

�
=

�
A11(z)s1(t−D/2)
A22(z)s2(t−D/2)

�
, (12)�

yFC
1 (t)

yFC
2 (t)

�
=

�
A12(z)s2(t−D/2)
A21(z)s1(t−D/2)

�
, (13)

or�
yICA
1 (t)

yICA
2 (t)

�
=

�
A12(z)s2(t−D/2)
A21(z)s1(t−D/2)

�
, (14)�

yFC
1 )(t)
yFC
2 (t)

�
=

�
A11(z)s1(t−D/2)
A22(z)s2(t−D/2)

�
. (15)

The proof of theorem and more details are given in [6].

3.2 Second stage: blind multichannel inverse filter-
ing for deconvolution

In this stage consider the blind channel identification cor-
responding to the first sound source s1(t). In this process,
the HRTFs, A11(z) and A21(z), can be estimated by a sub-
channel matching approach [7, 8, 9] in an SIMO framework
because we have already resolved the mixing process of the
sources into a simple SIMO model through SIMO-ICA in the
previous stage. The subchannel matching approach can work
even for the temporally correlated signal. Regarding the
blind channel identification corresponding to another sound
source s2(t), we can estimate A12(z) and A22(z) using the
same approach.

���������
	��

�����
����	��

���

����

Figure 4: Locations of sources and dummy head in the sim-
ulation. These systems are called Lθ1Rθ2.

We can estimate the multichannel inverse filters, G11(z)

and G21(z) for Â11(z) and Â21(z), and G12(z) and G22(z) for

Â12(z) and Â22(z), based on the multiple-input/output in-
verse theorem (MINT) [10]. In the MINT method, the exact
inverse of the transfer functions can be uniquely determined,

even when Âkl(z) has the nonminimum phase properties, if

Âkl(z) does not have any common zeros in the z-plane. For
example, the recovered signals ŝl(t) under Fig. 3 are given
as

ŝ1(t) = G11(z)y
(1)
1 (t) + G21(z)y

(2)
2 (t), (16)

ŝ2(t) = G12(z)y
(2)
1 (t) + G22(z)y

(1)
2 (t). (17)

The accurate estimation of the filter length N of the
impulse responses is indispensable for improving the system
identification performance. There are various methods for
filter-length estimation and we use the Furuya’s method [9]
in this work.

4. SIMULATIONS

4.1 Conditions for experiment

The mixing filter matrix A(x) is taken to be the HRTFs
which were measured by CIPIC. The CIPIC HRTF database
[5] was measured with KEMAR dummy head in an anechoic
room. It is a public domain HRTF database with the high
spatial resolution. We chose six azimuths from the database
and down-sampled them from 44100 Hz to 8000 Hz (shown
in Fig. 1). The locations of sound sources and the dummy
head are set as shown in Fig. 4. Elevation is set to 0 degree.
θ1 is fixed to −30 degrees, and θ2 is varied from 20 to 80
(20, 30, 40, 55, and 80) degrees. These systems are called
Lθ1Rθ2, e.g. “L−30R20”. Two sentences spoken by two
male speakers are used as the original speech samples s(t).
The sampling frequency is 8 kHz and the length of speech is
limited to 30 seconds.

We compare two methods as follows: conventional holo-
nomic ICA (ICA-based BSD) [2] given by (5), and pro-
posed two-stage BSD. The step-size parameter η is 1 ×
10−6 in the holonomic ICA and α is 1× 10−6 in SIMO-ICA;
these are optima which provide the best performance. The
length of the separation filter is set to be 512 taps.

In the experiment, two objective evaluation scores are
defined as follows. First, noise reduction rate (NRR) [11],
defined as the output signal-to-noise ratio (SNR) in dB mi-
nus the input SNR in dB, is used as the objective indication
of separation performance, where we do not take into ac-
count the distortion of the separated signal. The SNRs are
calculated under the assumption that the speech signal of the
undesired speaker is regarded as noise. Secondly, mel cep-
stral distortion (melCD) is used as the indication of decon-
volution performance. In this study, we defined the melCD
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Figure 5: Simulation results of noise reduction rate.

as the distance between the spectral envelope of the original
source signal sl(t −D/2) and that of the separated output.
The 16th-order mel-scaled cepstrum based on the smoothed
FFT spectrum is used. The melCD will be decreased to
zero if the separation-deconvolution processing is performed
perfectly.

4.2 Results and discussion

Figures 5 and 6 show the results of NRR and melCD for
different methods. From the results of NRR, the separation
performance of the holonomic ICA is comparable to those of
the proposed method and almost all of them are over 20 dB.
Accordingly the holonomic ICA and the proposed method
are both effective as far as the only separation performance
is concerned. As for the distortion of the separated speech,
which is an important issue from the practical viewpoint,
there is a considerable difference between two methods. As
can be seen in Fig. 6, it is evident that the melCD of the
holonomic ICA is obviously high, i.e., the resultant speech is
whitened by the decorrelation in the conventional method.
On the other hand, the melCD of the proposed method are
around 3 dB except for L−30R20 and L−30R40. Since the
melCD of the each binaural sound was around 4 dB, it can be
asserted that SIMO deconvolution part in the second stage of
the proposed BSD works effectively. These results indicate
that the proposed BSD has the possibility to achieve the
separation and deconvolution for binaural-sound mixtures.

5. CONCLUSION

In order to evaluate our proposed method in more actual
situations, we carried out BSD experiments assuming that
speech sources are convolved with HRTFs. The simulation
results reveal that the proposed two stage BSD method [1]
can achieve the sufficient separation performance as much
as holonomic ICA and can recover the source signals from
binaural-sound mixtures.
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