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ABSTRACT

We introduce an algorithm implementation for the de-
composition of quasi-steady state audio signals using har-
monic matching pursuits. Specifically, we propose an initial
low-resolution pitch analysis followed by a high resolution
harmonic grain extraction based on local complex interpo-
lation within the spectral domain. We describe the imple-
mentation of the algorithm and illustrate its applications to
musical analysis of monophonic signals before finally dis-
cussing possible improvements that could lead to the design
of an iterative multi-pitch harmonic analysis system.

1. INTRODUCTION

Recent frameworks based on hybrid representation of au-
dio signals attempt to decompose an input waveform as a
linear combination of several distinct components. In such
schemes, the stationary part is extracted from the original
signal and separated from the noisy [1] or noisy plus tran-
sient [2] part. Resulting signals can then be processed indi-
vidually, taking into account their own spectral, temporal or
stochastic characteristics.

In this paper, we have focused on the modeling of the
harmonic stationary component of audio signals. Such wave-
forms can be obtained by removing the transients [3], which
occur during the attack of a note and present strong time lo-
calisation together with non-stationary properties. Diverse
applications can be found in signal compression, musical
analysis, musical modeling and automatic music transcrip-
tion.

1.1 Harmonics, pitch and fundamental frequency

Many musical instruments produce harmonically related
sounds, made up of several sinusoidal components, hav-
ing their frequencies approximately integer multiples of the
note’s fundamental frequency. These sinusoidal components
are also called harmonics, or partials, and give the sound
its timbral characteristic, whilst the fundamental frequency
generally gives the sound its pitch. However, in many cases,
the fundamental frequency may not be present, without hav-
ing an effect on the perceived pitch [4]. As an illustration,
figure 1(a) shows a missing partial, and figure 1(b) shows a
weak fundamental frequency component. These two sounds
are however perceived as if the latter frequency components
were unaltered.

Because of these issues, simply choosing the position of
the lowest frequency high energy sinusoidal component as a

Figure 1: Spectral plots of both (a) low and (b) high vio-
lin notes showing respectively a missing partial and a weak
fundamental frequency.

possible fundamental frequency may not be relevant in terms
of meaningful grain extraction.

The low-resolution pitch analysis stage presented in sec-
tion 2 helps to select the harmonic series which will remove
the maximum energy from the spectra.

1.2 Matching pursuit using harmonic grains

Introduced in [5], the iterative harmonic matching pursuit al-
gorithm approximates a signal with a linear combination of
elementary waveforms, also called harmonic atoms. At each
iteration, the best matching function is chosen from a redun-
dant dictionary of harmonic Gabor functions. The residual is
then similarly processed until the pre-defined energy-based
stop criterion is satisfied.

Harmonic matching pursuit is an extension of the more
general matching pursuit decomposition introduced in [6].
By considering dictionaries of harmonic atoms, such algo-
rithms allow the extraction of higher level objects, which, in
the case of audio signals, can lead to a meaningful musical
interpretation (e.g note detection).

We present here an efficient dual resolution spectral-
based approach that significantly reduces the computational
requirements but still maximises the energy extracted at each
stage:
• Low resolution harmonic energy analysis: the harmonic

energy is calculated for each potential fundamental fre-
quency. The harmonic series corresponding to the max-
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imum harmonic energy is chosen. A rough value of the
fundamental frequency is then estimated from the bin lo-
cation of the fundamental and its partials.

• High resolution harmonic grain extraction: using the
above value of the fundamental frequency, a local com-
plex interpolation within the FFT frame is performed
in order to determine more accurate values of the fun-
damental and its partials frequencies together with their
corresponding amplitudes and phases. The resulting har-
monic grain is then synthesised and subtracted from the
original grain.

2. LOW-RESOLUTION HARMONIC ENERGY
ANALYSIS

2.1 Harmonic energy calculation

Within an FFT frame, a frequency domain component con-
tributes to the harmonic energy of the series if it is the max-
imum component within the corresponding harmonic win-
dow. This window increases in width linearly with the par-
tial number. To be more specific, let us consider an FFT
frame with a resolution of 20 Hz and a harmonic series cor-
responding to the fundamental frequency bin 100− 120 Hz.
The first partial could appear anywhere between 200 and 240
Hz, corresponding to a harmonic window twice the width of
the resolution value. Similarly, the next partial could appear
anywhere between 300 and 360 Hz, i.e. three times the ini-
tial window width. The harmonic window width (in bins) as
a function of the partial number p is given by:

ν(p) = p, p = 1, ...,ρ

where p is the partial number; p = 1 represents the funda-
mental and ρ − 1 the desired number of partials excluding
the fundamental. Its value depends on the input signal and
the sampling frequency. In practice, values around ρ = 15
for a 44.1 kHz sampled signal gave satisfactory results with
our test signals.

The harmonic energy Λ(k) is calculated for each poten-
tial fundamental index k as:

Λ(k) = |X(k)|2 +
ρ

∑
p=2

max
ν
|X(kp+ν(p)−1)|2

where X is the complex FFT of the input frame. The har-
monic series with the highest energy is then retained. It cor-
responds to the fundamental index k = k0.

The selected series is used to calculate an approximation
of the fundamental frequency:

f̃0 =
1
ρ

ρ

∑
p=1

fk0,p

p

where fk0,p is the frequency corresponding to the maximum
amplitude over the considered window ν(p):

fk0,p = fmaxν |X(k0 p+ν(p))|
This new measure of fundamental is used to select the

most relevant partial bins, by rounding the expected partial
position

f̃p = p f̃0, p = 1, ...,ρ
to the nearest bin value. These bins values are used in the
high resolution harmonic grain extraction stage described in
section 3.

3. HIGH-RESOLUTION GRAIN EXTRACTION

3.1 Frequency domain interpolation

Prior to the grain extraction, frequencies and corresponding
phases of the selected fundamental and partials are interpo-
lated in order to counterbalance the FFT finite resolution and
therefore to maximise the energy extracted at each iteration.

Zero-padding the time domain input frame could achieve
this goal but is clearly computationally inefficient as only the
fundamental and the considered partials must be synthesised.

The following technique is identical to a zero-padding,
but is applied locally to a region of the FFT around the con-
sidered peak (typically the width of the harmonic window as
defined in section 2.1, extended by 2, 3 or 4 bins). It has
the advantage of interpolating both phase and amplitude to-
gether.

Figure 2: Illustration of a harmonic grain extraction within
a FFT frame. (a) original FFT frame. (b) FFT of the ex-
tracted grain after interpolation. (c) FFT of the residual
without interpolation. (d) FFT of the residual after inter-
polation (ξ = 20).

1. The interpolation function is calculated using the FFT of
a zero padded rectangular window (by a factor ξ ). These
values are calculated once and saved in a table.

2. For each input frame, the frequency bins required for the
interpolation (the fundamental and its related partials) are
extracted as vectors and upsampled by the interpolation
factor ξ .

3. The vectors are then convolved with the interpolation
function values, achieving a local, complex domain in-
terpolation.

Figures 2(c) and 2(d) show the advantages of using the
interpolation in terms of the extracted energy per FFT frame.

The harmonic grain is then synthesised in the time do-
main and subtracted from the original grain. In the case of
monophonic signals (one instrument), the algorithm stops. If
not, the residual is processed similarly, until no more har-
monic series are detected.
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3.2 Orthogonality of harmonic grains

As shown in [5], the windowed sinusoids used in the algo-
rithm are not necessarily orthogonal. Re-orthogonalisation,
while possible, would be much too computationally expen-
sive. In order to quantify the possible effects of using non-
orthogonal basis functions, we compared the energy mea-
sures taken from the harmonic matching pursuits algorithm
with the same decomposition using sinusoids which had been
re-orthogonalised after selection using the QR orthogonal-
triangular decomposition. The results for a violin tone are
shown in figure 3. It can be seen that for the frame length
considered here, the error due to non-orthogonality is trivial
for all but the very low frequencies (in the case where the
fundamental frequency is below 100 Hz).
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Figure 3: Effects of orthogonalising sinusoidal components
of a harmonic grain on the harmonic energy measure. The
FFT is shown in (a), with the two different measures of har-
monic energy given in (b) and the absolute difference be-
tween the two values in (c). Frequencies are in Hertz.

3.3 Transient/Steady-State (TSS) separation

The harmonic matching pursuit algorithm is designed to
model the slowly time varying steady state component of au-
dio signals. Noisy high frequency time localised informa-
tion, like transients or hard onsets, cannot be studied using
harmonic grains. Further, their presences in the input sig-
nal may introduce artifacts as a virtual pitch (and possibly
a whole harmonic series) can be detected during the low-
resolution analysis stage. For this reason, a pre-treatment
is applied in order to separate both transient and steady state
signals from the original waveform. Details and examples of
such TSS implementation can be found in [3].

4. ALGORITHM IMPLEMENTATION AND
RESULTS

Tests audio signals (trumpet and jazz guitar pieces) were
sampled at 44.1 kHz. The analysis stage was performed on
successive frames of 2048 samples weighted by a Hanning
window. Using such a window clearly sacrifices temporal
localisation. A hop size of 25% (i.e. 512 samples) was there-
fore used to retain some signal timing information. ξ was
set to 20 and the local interpolation is applied on a 7 bins
vector (the selected peak plus 3 bins on each side). A fi-
nal point regarding robust implementation of this algorithm

is to ignore the first three bins corresponding to the frequen-
cies 0−65 Hz, as issues related to the lack of orthogonality
become more preponderant in that frequency range as stipu-
lated in section 3.2. However, this should not induce severe
artifacts as it is quite uncommon for musical signal to con-
tain notes at such low frequency. Interpolated amplitudes,
frequencies and phases are then used to synthesise the grain
in the time domain using the oscillator bank approach (see
[7] for details).

Figure 4 is an example of pitch extraction for a mono-
phonic trumpet signal. The algorithm accurately restitutes
the evolution of the fundamental frequency as a function of
time. Figure 5 is an illustration of the complete application of
the harmonic matching pursuits on a monophonic jazz guitar
piece after having removed the transients [3]. Figure 5 (e)
represents the time waveform residual after substraction of
the synthesized signal from the original. One can notice that
the transients are still slightly present, but nevertheless much
more attenuated than if the whole original signal was used
during the decomposition. Finally, figure 6 is an example
of notes extraction. An artificial mixture of two piano notes
without overlapping harmonics (B-250 Hz and F-350 Hz) has
been synthesised. Two successive iterations of the algorithm
are needed to decompose the input frame in two harmonic
grains corresponding to the two individual notes. Residual
errors (figures 6(c) and 6(f)) mainly contain noise and infor-
mal listening tests did not show any perceivable differences
between the originals and extracted notes.
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Figure 4: Extracted pitches (fundamental frequencies) as a
function of time for a harmonic monophonic trumpet piece.

5. CONCLUSION AND FUTURE WORK

We introduced in this paper an efficient two-stage implemen-
tation of the matching pursuits algorithm based on a har-
monic grain extraction within the spectral domain.

We first showed the advantages of considering harmonics
objects in terms of:

• high level musical interpretation: as the extracted grain
contains a complete harmonic series, it can be usefully
characterised as a distinct musical note.

• computational efficiency: at each iteration, a complete
series of sinusoidal components is extracted, as opposed
to sinusoidal matching pursuit, where only one peak is
picked at a time, thus requiring far fewer iterations.
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Figure 5: Harmonic matching pursuits complete analy-
sis/synthesis decomposition of a monophonic jazz guitar sig-
nal. (a) spectrogram of the original signal. (b) original
waveform. (c) spectrogram of the resynthesised using a sin-
gle harmonic grain per frame. (d) resynthesised waveform.
(e) left over time domain residual.

Then, we introduce a local interpolation scheme, equiv-
alent to a local zero-padding in order to obtain accurate fre-
quency, amplitude and phase values of the selected harmonic
peaks.

This implementation performs well for stationary audio
signals. The quality of the extraction is good even though we
make no assumptions about the type of instrument which is
played.

Improvements, however, are needed to make the algo-
rithm more robust and applicable to a wider range of signals.
Firstly, problems arise with polyphonic audio mixtures con-
taining overlapping harmonics. This is a common drawback
of all the spectral analysis techniques. In such a case, har-
monics corresponding to a given pitch may be affected to
another harmonic series, thus introducing some false notes
in the considered grain. This can be overcome for example
by making assumptions about the harmonic distributions [8].
Secondly, if the signal is not purely steady state, the residual
is shaped into harmonics which may introduce artifacts in the
extracted signal. Particular attention should therefore be paid
regarding the quality of the TSS decomposition.
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