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ABSTRACT

In this paper we derive algebraic algorithms for the blind extraction
of Constant Modulus source signals from convolutive mixtures. In
the single-channel case the equalizer follows from the best rank-1
approximation of a fourth-order tensor. In the multi-channel case
we consider the case of paraunitary mixtures. The solution can then
be obtained by means of a simultaneous matrix decomposition.

1. INTRODUCTION

In this paper we derive deterministic algorithms for the Single-
Input Single-Output (SISO) and Multiple-Input Multiple-Output
(MIMO) blind deconvolution of Constant Modulus (CM) signals.
These techniques extend the Analytic Constant Modulus Algorithm
(ACMA) [15], which applies to instantaneous mixtures.

The results are obtained from combining the derivation of
ACMA with principles of subspace processing [11] and concepts
of (multi)linear algebra [2, 5, 6, 7, 13].

We consider the following data model:

Li—1
Y(n) = [;) A(l)X(n—1),

in which X(n) € CXi are the unkown CM source signals, ¥ () €
Ck2 | with K, > K;, are the observed outputs and Al e CKaxKy
[ =0,...,L;— 1 contain the unknown channel coefficients. We as-
sume that it is possible to equalize the channel by means of a Finite
Impulse Response (FIR) filter B(z):

Le—1
IZO B()¥(n—1), (1)

X(n) =

in which B(/) ¢ CK*K 1 =0,... L, — 1. It is well-known that
sources may only be recovered up to a permutation, phase shift and
time delay.

In Section 2 we assume that channel and equalizer are parauni-
tary. This is the case when first a prewhitening has been carried out.
In Section 3 we consider a SISO channel and equalizer. Section 4
is a small note on blind deconvolution in the case of oversampled
data. In Section 5 the performance of our algorithms is illustrated
by means of some simulations. Section 6 is the conclusion.

On-line algorithms for blind deconvolution in digital commu-
nications often need long data blocks to converge (typically from
10,000 to 100,000 symbols). Off-line algorithms exhibit much
shorter convergence times. However, techniques that exploit the
statistical independence of the source signals may still require sub-
stantial sample sizes for the estimation of (higher-order) statistics.
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The algorithm presented in Section 2 only presupposes a
whitening. The equalization of the paraunitary system is merely
based on the algebraic structure induced by the CM property;
higher-order statistics are not required. The SISO algorithm and
the technique proposed in Section 4 are purely deterministic. The
transmitted sequences do not have to be mutually statistically inde-
pendent, nor independent identically distributed (i.i.d.). As a result,
the algorithms can be used for small sample sizes (e.g. in the case
of slow channel fading).

We use the following notation. -7 denotes the transpose, -7 the
complex conjugate transpose, -* the complex conjugate. ® denotes
the Kronecker product. Scalars are denoted by lower-case letters
(a, b, ...), vectors are written as capitals (4, B, ...) (italic shaped),
matrices correspond to bold-face capitals (A, B, ...) and higher-
order tensors (multi-way arrays) are written as calligraphic letters
(o, A, ...). K, Land N are reserved to denote the upper bounds of
indices k, [ and n.

2. PARAUNITARY FILTERS

In this section we assume that channel and equalizer are paraunitary
due to a prewhitening. The channel transfer function can then be
factorized as [14]

AlZl=Q 1 Z[7]- QL2 ... Z[z]- Qo, )

where Q; € CKXK [ =0,... L —1 are unitary and Z[z] is (K x K)
diagonal
Ix 0
ze- (M50,

with Ix_; the (K — 1) x (K — 1)) identity matrix.

A special property of paraunitary filters is that they can be
equalized by an FIR filter of the same length. The equalizing fil-
ter is also paraunitary. For A[z] given by Eq. (2), we obtain the
equalizer

Bl =Q¥ -Z[z]-...- Q' ,-Z[1]-Qf",, 3)

7l = ( 2713K71 (1) )

This equalizer is usually estimated from the higher-order statistics
of ¥ (n), by claiming that the source signals are mutually statistically
independent [3, 4, 12]. Here we will derive a new technique based
on the CM property of the sources.

Let B € CKXIK e the concatenation of the matrices {B(/)}.
Due to the paraunitary constraint, B is row-wise orthonormal [3].
Let us stack the vectors ¥ (n), ¥ (n—1), ..., ¥(n— L4 1) in one big
vector Y (n) € CLX, Then Eq. (1) can be rewritten as

with

X(n)=BY(n). (4)

B should be determined in such a way that X(n) has unit-modulus
entries.
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Initially, we may work as in [15]. Let B € C'*ZX be a row of
B. The signal
#(n) = BY (n) (5)

is unit-modulus if and only if

X1 = Br)y()BT=1

R(N)? - BY(N)Y(N)"B" =1, (6)

in which N is the number of samples Y (rn). Eq. (6) can be rewritten
as

Y()T @y (1)# !

T H 1
r(2) §Y(2> B eBH=| . |. @
Y(N)T @Y (M) !

By multiplying both sides of Eq. (7) with a Householder or a dis-
crete Fourier transform matrix, we obtain a set of equations of the

form uF
N
My BT o B — 0 8
M (B" ®B") = ) (8)
0

in which M, € C1*K)? and M € CV-D*(LK)?* | The first equa-
tion is only a normalization constraint. Every row By of B leads
to a vector in the kernel of M. Generically, for N big enough, the
kernel of M is of dimension K. (Note that if L' > L vectors are
stacked in Y (n), the kernel is of dimension (L' — L + 1)K (number
of possible time shifts induced by the equalizer x number of source
signals). In this way the equalizer length may be estimated.) Hence,
the problem consists of (i) computing the kernel of M (by means
of an SVD), and (ii) looking for vectors in the kernel subspace that
have a Kronecker structure.

The fact that the kernel of M is spanned by the vectors {B,{ ®

ij }, can be reformulated as

F, = BT.D,.B*

Fx = B".Dg.-BY, )
in which Fy, ..., Fg are (LK x LK) matrix representations of K
basis vectors of the kernel, and in which the (K x K) matrices Dy,
..., Dk are diagonal. One can always choose kernel vectors that
correspond to real-valued Dy, which leads to Hermitean matrices
F;. Consider a third-order tensor .# € CLRXLRXK "in which the
matrices F'y, ..., Fg are stacked. Eq. (9) represents a Canonical
Decomposition of .%, with orthonormality constraints on B [7, 13].
B may be found from this decomposition.

Now we will derive one particular computation scheme. We
can reduce the dimensionality of the problem by noticing that BT
spans the column space of every matrix F;. Hence, in the absence
of noise, the column space of B” can be determined as the subspace
corresponding to the K dominant left singular vectors of the matrix
F = [F...Fk]. In the presence of noise, this approach is (slightly)
suboptimal. A technique for the computation of the best subspace
in least-squares sense is explained in [5, 6]. Let the columns of
U e CLEXK form an orthonormal basis of this subspace. Then the
remaining problem is of the form

G, = E-D-E7

Gy = E -Dg-E”, (10)

in which G € CK*K | 1 < k < K, are defined by
G,=U".F,-U

and in which the unknown factor E € CK*K| equal to Ui BT, is
unitary. E may very efficiently be computed from (10) by means of
the JADE algorithm [2].

Let us associate to U7 a filter U7 (z) of which the matrix coeffi-
cients are the subsequent (K x K) submatrices of U7 Note that the
computation of U in fact reduced the equalization problem to the
blind separation of an instantaneous linear mixture: after passing
¥ (n) through U7 (z), the remaining mixture is instantaneous since
we have B=ET . UT.

3. THE SISO CASE

Contrary to paraunitary channels, SISO FIR channels cannot be ex-
actly equalized by means of an FIR equalizer. In this section we
will look for the optimal equalizer of a given length L.

Let B € C'* represent an (approximate) equalizer of a channel
with transfer function a(z). Subsequent observations are stacked in

a vector Y (n) € CL. We compute a matrix M in the same way as
in the previous section. We now have to determine the minimum of
the cost function

f(B)= M- (BT @B")|, (11)

under the normalization constraint ||B|| = 1. Let the singular values
of M be given by 0, and let the right singular vectors be stacked in

(L x L) matrices V,, 1 < p < L?. Then f is given by

LZ
f(B) = ; Zl 05 (V)ij(Vp)ibib’bih. (12)
1jkl p=

Minimization of this cost function is equivalent to maximization of

LZ
g(B)=0? — % S 02(V)i; (Vp)isbib’bihy. (13)
ijkl p=1

This function is nonnegative because B is unit-norm and {V,} cor-

respond to orthonormal vectors. Let .7 € CEXLXIXL be the super-
symmetric tensor with entries

LZ
tijrr = OF 0By — > 0, (V)i (V)i
p=1

in which Jy, is the Kronecker delta (&5 = 1 if = s and 0 otherwise).
Then we have

g(B) = %tijklbib;bzbb (14)
b

This means that maximization of g(B) corresponds to finding the
best supersymmetric rank-1 approximation of 7. Indeed, if we
want to minimize

h(A,B) |.7 —ABT 0B o B o BT |2
tijk — A bibbghy|*
ijkl

over A € R and unit-norm B, then the optimum corresponds to the
optimal equalizer and A, is the global maximum of g. We refer to
[5,9, 19] for background and algorithms.
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4. OVERSAMPLING

A common way to ensure that an FIR equalizer exists, is temporal
and/or spatial oversampling [11, 16]. Let K, be the product of the
number of antennas and the temporal oversampling rate. Then we
suppose that K, > Kj.

A difficulty is that equalizers are not unique, like in Section 2.
Let a be the smallest integer such that K> (a + 1) > (Ls + a)K].
Then L; + a equalizers may be obtained for each source signal,
each containing K, (o + 1) coefficients. These equalizers result in
different time shifts. In [17] this constraint is combined with the
CM constraint. This leads to a set of Kj matrices Fy, ..., Fg, of
dimension (K (0 + 1)(Ls+a) x Kx (o +1)(Ls + a)), satisfying

F, = BT.D,.B*

Fx BT .Dg, - B, (15)

1

in which {Dy;} are (K; x K}) real diagonal and in which B €

CKiKa(a+1)(Ls+0) In g row of B the different equalizers for one
source are stacked. Eq. (15) can again be considered as the Canon-
ical Decomposition of the third-order tensor in which the matrices
{F} are stacked. The difference with Eq. (9) is that now matrix B
is not subject to orthonormality constraints.

To reduce the computational complexity, we propose to work
in analogy with Section 2. First we compute the K;-dimensional
subspace that best spans the column spaces of Fq, ..., Fg, [5, 6].

Let the columns of U e CK(a+D(L+a)xKi form an orthonormal
basis of this subspace. The problem then reduces to

G, = E.D,-E7

Gg, = E-Dg -Ef (16)

in which Gy, 1 < k < K}, defined by
G,=U".F, .U,

are only of dimension (K] x K7). The unknown factor E € CKi>K1
equal to U . BT, is now non-unitary. Algorithms for non-unitary
simultaneous diagonalization may be found in [7, 13, 15, 18] and
the references therein.

5. SIMULATIONS

A first simulation illustrates the technique derived in Section 2,
however with one modification. Practice shows that, in the presence
of noise, the right singular vectors of the matrix M in Eq. (8), cor-
responding to the smallest singular values, occasionally yield mul-
tiple equalizers for the same source. These equalizers correspond
to different time shifts. In such a case, we increase the number of
singular vectors that are retained. Although the matrix B in Eq. (9)
is now not row-wise orthonormal anymore, we may still proceed as
in Section 2. The only difference is that the factor E in Eq. (10) is
square non-unitary, like in Section 4.

In our simulation, channel and equalizer are (2 x 2) paraunitary
of length L = 4. The matrices Q; in Eq. (2) are of the form

cos 6;

Q= ( —sinGe=/®

in which the parameters 6; and ¢, for 0 </ < L — 1, are drawn
from a uniform distribution over [0,277). Sources are QAM4. A
data block consists of 200 samples. The channel outputs are con-
taminated by i.i.d. zero-mean Gaussian noise of variance G,%,. The
experiment consists of 300 Monte Carlo runs. In each run, new re-
alizations of channel, sources and noise are generated. The average

sin G;e/®
cos 6; ’
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Figure 1: SER as a function of SNR in the first experiment.

2

15
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Figure 2: Number of cases in which a kernel of dimension d > 2
was used (first experiment).

Symbol Error Rate (SER) is plotted as a function of the Signal-to-
Noise Ratio (SNR) in Fig. 1. All symbols were estimated correctly
when the SNR > 17.5 dB. Fig. 2 shows in how many cases an
extended kernel was used.

A second simulation concerns the SISO case. The channel is
taken equal to an FIR filter of length L; = 4, with zeros 0.1 — 0.2i,
0.3+ 0.17 and 0.1 — 0.4i. We try to equalize this channel by means
of an FIR filter of length L, = 2. Like in the previous simulation,
sources are QAM4, data blocks consist of 200 samples and 300
Monte Carlo runs are carried out. In each run, new realizations of
sources and noise are generated. For the best rank-1 approximation
we used the algorithm described in [5, §3.3], initialized with the
starting value proposed in [9, §6]. The average SER is plotted as a
function of the SNR in Fig. 3.

Next, we consider the computation scheme proposed in Sec-
tion 4. We consider the case where 2 source signals are mixed by a
channel of length L; = 2. Furthermore, K, = 4. The channel coeffi-
cients are drawn from a unit-variance zero-mean complex Gaussian
distribution. Sources are QAM4. A data block consists of only

Symbol Error Rate [%]

15 20

10
Signal to Noise Ratio (dB)

Figure 3: SER as a function of SNR in the second experiment.
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Figure 4: Percentage of successful runs as a function of SNR in the
third experiment.
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Figure 5: SER as a function of SNR in the third experiment.

100 samples. The channel outputs are contaminated by i.i.d. zero-
mean Gaussian noise of variance G]%,. The experiment consists of
300 Monte Carlo runs. In this case, the matrices {Fy} are of di-
mension (8 x 8). On the other hand, the matrices {G} are only
of dimension (2 x 2) and the solution may be obtained by a simple
Eigenvalue Decomposition of a (2 x 2) matrix [10]. For the com-
putation of {Fy}, we used the third algorithm proposed in [17].

The estimation of the equalizer was considered as a failure if
the SER was over 30 %. The percentage of successful runs, as a
function of the SNR, is plotted in Fig. 4. The corresponding SER
values are shown in Fig. 5.

Of course, when the channel is ill conditioned, this makes the
equalization task much more difficult. In our simulation, the con-
dition number K varied between 2.3 and 64. Figs. 4 and 5 show
curves for the overall average, for K < 15 (253 runs) and for k < 10
(207 runs).

6. CONCLUSION

In this paper we have derived algebraic algorithms for the blind de-
convolution of CM sources. Data blocks may be short. The tech-
niques can also be used to extract CM sources from mixtures that
also contain non-CM components.
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