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ABSTRACT

The level of performance as well as the timing accuracy in
the detection of QRS complex may be crucial for further
nonlinear biomedical signal processing applied on the de-
rived RR time series. By studying the fatigue process during
exercise, a highly non-stationary noise is expected as well as
time-varying QRS complex morphology. In difficult re-
cording conditions, the QRS complex detectors have to be
extremely robust but also have to meet high performance
requirements. To achieve this aim, a "smoothed" matched
filtering is realized on specific wavelet coefficient patterns
in the time-scale plane. The detection is enhanced using the
family of Klauder wavelets which demonstrate similarities
to ECG waveforms. The algorithm only needs to capture a
correct QRS complex snapshot before launching the detec-
tion.

1. CONTEXT OF DETECTION

In recent years, many devices have been proposed for real
time detection of the R-R interval in the electrocardiogram
(ECG). When recording conditions are too difficult, the de-
tection of the typical QRS complexes in ECG signals be-
comes unreliable and the instrument fails to give correct R-
R sequences for further analysis. This is particularly true
when the experimental protocols are related to dynamic
physical exercises and when recording conditions are real-
ized during intensive sport practice in the open air. More-
over, the most difficult recording conditions often coincide
with stressful physical situations, just when the data could
be very useful for monitoring and for making relevant medi-
cal interpretations. Evaluation of physical fatigue can be
quantified through Heart Rate Variability (HRV) which sup-
poses a good timing accuracy in QRS detection.

Many real-time QRS detectors have been realized using the
prefiltering/matched filter/thresholding detection scheme
[1,2,3]. However, these operations are subject to the time
varying morphology of the QRS complex in ECG signals.
The best results in the QRS detection are obtained with a
neural networks approach [4]. The technique is constraining
and very difficult to implement because of a long patient
dependent learning phase. From a practical point of view,
indicators must be rapidly delivered, if possible at a real-
time rate during the experiments. The learning phase must
then be prohibited whereas the detector must be adapted to

any kind of noise and any morphological change in the car-
diac electrical waveforms.

In this paper, we consider these difficulties by enhancing
both performance and robustness.

* Performance in a detection problem essentially depends
on the amount and quality of the a priori information
that is injected in the construction of the detector. In the
present case, QRS waveforms are quite well known
which means that the concept of matched filtering must
be preserved to get optimal performance. Since ECG
waveforms may vary considerably depending on the pa-
tient, the kind of experiment and the experimental condi-
tions, it is therefore necessary to capture a "QRS signa-
ture" at the beginning of each recording from which the
detection will be realized.

* Considering a QRS model brings performance to the
detriment of robustness. We achieve robustness by mak-
ing the concept of matched filtering more flexible, i.e.
able to deal with the QRS complex time-varying mor-
phology. The method used is based on the Frisch &
Messer [5] approach.

¢ We propose to build the detector after linear transform,
as described in [5,6]. Wavelet transform is a particular
class of linear transform that allows the bad noise' prop-
erties to be locally attenuated. This point is important to
fit with the constraining noise hypotheses imposed by
the matched filter.

2. WAVELETS FOR DETECTION

For many years now, wavelets have proved their efficiency
in various detection problems [7]. In QRS detection, the
authors essentially used the multiscale feature of wavelet
transform to distinguish QRS complex from high P or T
waves, noise, baseline drift and artifacts [8, 9]. Detectors are
based on the Mallat and Hwang's approach [10] where the
idea is to measure a degree of singularity and regularity to
detect and classify the peaks. The singularity degree of a
signal can be measured through its wavelet coefficients pro-
ducing localized maxima across several consecutive scales
when a peak is present and the R-peak validity is estimated
from the decay of the wavelet coefficients giving a regular-

' The noise is not permanent and is highly nonstationary. The
nature of the noise varies: impulsive, wide band, spectral
line, baseline drift, abrupt dc change...
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ity measure. In practice, detectors are made data-dependant
because empirical rules as well as many experimental
thresholds are used. Signals are decomposed on dyadic grids
that are not flexible since the grid points are predetermined
in the time-scale plane. In this work, we propose to calculate
the time-scale grid adapting it to the time frequency QRS
characteristics. We will show that the QRS time frequency
characteristics will permit to choose the mother wavelet and
also induce the time-scale discretization.

2.1 Choice of the wavelet

For a detection purpose, the key point is to consider a wave-
let which looks as “similar” as possible to the signal to be
detected and if possible orthogonal to any kind of distur-
bance. The idea behind this natural choice is that the infor-
mation will be highly concentrated thus carried by few large
wavelet coefficients allowing an easy discrimination with the
noise coefficients. The latter will spread over the entire time-
scale plane. Finally, the ECG waveform will be coded with
only a few strong wavelet coefficients, permitting the medi-
cal signal to be distinguished from the ground. To that aim,
we chose the Klauder complex wavelet whose real and
imaginary parts closely resemble an ECG waveform (see Fig

).
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Figure 1 ECG waveform and its associated Klauder
wavelet (for r = 0.07, m = 0.9) - (Top) Real and Imaginary
parts - (Bottom) Envelope of the waveforms. This panel
shows the similarities between the two waves.

Note that the similarity is enforced by a possible asymmetry
of the Klauder waveform.

2.2 The family of Klauder wavelets

2.2.1 Definition
The family of Klauder wavelets is defined according to the
pair of parameters # 1] ", m O[=1/2;+0c0 [ as[11]:
m+1/2
)" rm+1) 1

Y= \/m (V—it)mH

+00

where [(m) = (m—=1)!= j "™ dt with m > 0.
0

The Fourier Transform of the Klauder wavelets has the al-

gebraic expression:
Qry™"*J2m

P = Jr@m+1)

where U( ') stands for the unitary step function.
Note that W""(0)=0= I(// ""(t)dt which says that

(27f)" > U (S

(""" (t) is an admissible wavelet. This means that the

original signal may be errorless reconstructed from the con-
tinuous wavelet coefficients”. The energy is preserved when
transforming the temporal domain to the wavelet coeffi-
cients domain. This property makes it possible to reconstruct
any time-scale area of the time-scale plane in the temporal
domain for filtering purposes.

2.2.2 Time and frequency statistics
With the above definition, the Klauder wavelets have unitary

energy both in time or frequency, relative to the L*norm.
Mean values and uncertainties can be calculated. The mean

value of the function F'(X) is classically obtained by:

+o00
I x|F (x)|2 dx
-0
Xy =
[l
The uncertainty of the function F'(x) is calculated accord-
ing to:

_ H(x - X, ) F(x)”
[
2m+1
The mean frequency reads fo (r,m) = Hz.
Tr
i 2m+1
The frequency uncertainty reads Df (r,m) = ——— and
4mr
the temporal uncertainty reads D?(r, m) = . Both
2m—1

parameters r and m influence the central frequency as well as
the time and frequency uncertainties. Actually, the parameter
m is directly linked to the number of oscillations in the enve-
lope (this is easily verified by evaluating the quality factor

= A that only depends on m).
A
1 [2m+1

Note thatDt(r, m)Df(r, my———,|—.
4\ 2m—1

that the Gabor-Heisenberg lowest time-frequency uncertainty

This means

* On the contrary, another well known family of complex
wavelets — the Morlet wavelets, as defined in [14] - which
are parameterized by the center frequency and frequency
bandwidth do not respect this property.
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bound 1/47Tis rapidly attained with the wavelet order. The

Klauder wavelets are thus very well localized in time and
frequency, bringing the advantage that wavelet coefficients
are able to support most of the information concentrated in
the smallest area around their position in the discretized time-
scale plane.

Finally, a simple procedure for choosing the appropriate
mother wavelet consists in selecting the parameters » and m
that equalize the mean frequency and the time and frequency
uncertainties between an ECG pattern and the desired wave-
let. This procedure supplies in a simple way a means to
automatically choose a wavelet which evolves like the ECG
pattern.

Other parameterized wavelets [12] have been tested, for

which we calculated f0 and D '/ analytically (table II).

Table II Relations between the wavelet parameters
f.; f, and the fO;Df frequency characteristics.

Wavelet Klauder Morlet B-spline1 | B-spline 2
2m+1
ol e /. /. /.
D. 2m+1 1 Sy Sy
/ arr 2mff, | V12 V40

Table IIT gives a quantitative comparison, in a mean square
fit error sense, between real QRS waveforms and the
matched wavelet.

Table III Mean square fit error between the QRS wave-
form and the matched wavelet, for different wavelets (av-
erage over the whole QRS snapshots of record #100 in the
MIT database [13] - 2273 waves)

Wavelet

Klauder

Morlet

B-spline 1

B-spline 2

2
L’ norm

0.28

0.41

0.33

0.40

3. THE PROCEDURE OF DETECTION

In order to take into account time-frequency uncertainties,
the comparison is realized through a set of 4 neighbored
wavelet coefficients, as proposed in [5], see Fig. 2. The idea
is to cover the wavelet uncertainty area with a 4-point pat-
tern of the sampling time-scale plane. The uncertainty area
can completely be determined through the theoretical time
and frequency uncertainties of the wavelet. The 4-point pat-
tern is chosen to introduce some redundancy both in the
time and scale directions and to limit the computation cost.
Considering the continuous wavelet transform with discrete
coefficients as

WT.(j,n)= j°° x(t)a,'(a,’t —nb,)"dt , it is there-
fore possible to take D, =3b, and D, =2(a, —1)f,

such that the elementary pattern covers the wavelet time-
frequency uncertainty (i.e. with a little redundancy in time

and scale). Parameters @, and bo are thus automatically

deduced from the estimated fo .
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Figure 2 Time-scale grid, D domain and elementary pat-
tern.

However, the QRS morphological variability has the effect
of making the QRS pattern evolve slightly in a localized
area along the time and frequency axis. These variations are
solved by the Generalized Likelihood Ratio Test (GLRT)
which consists of searching the maximum LRT over a time-
frequency area to be defined. More precisely, defining a 4-
coefficients pattern moving in the t/f plane, assumes a con-
stant quality factor Q which is intrinsic in the wavelet trans-
form construction (this is the effect of the scales structure).
Cardiac waveform cycles always show a constant number of
oscillations due to polarization mechanisms, except for
pathological cases. This corresponds to a constant quality
factor which is coherent with a wavelet behavior.

Applying the GLRT, the detector finally takes the maximum
of the LRT when the pattern comparison is swept over a
determined BT plane (Fig. 2). The bandwidth B and duration
T of searching is determined such that the energy concen-
trated in the elementary pattern is uniformly distributed in

this rectangular area (B = \/BDJ- and T =+/24D, ac-

cording to [5]).

Finally, performance is obtained by matched filtering in the
time-scale plane. Robustness is guaranteed by the GLRT.
Note X,S and M the 4-wavelet coefficients elementary pat-

tern vectors respectively of the signal, the model and the
noise. Considering a possible set of K models s, , the GLRT

writes:
J

K
_ H H_ H
/\GLRT(x)—rrklglx[n}gx(xj S TS X, =S, sj,k)}

J stands for the number of elementary patterns in the domain
BT.

In practice, it is difficult to consider that the noise is white
and Gaussian. Noise distribution and spectra should be esti-
mated. Models of noise sources can be used but their statisti-
cal properties may be very different making it difficult to
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unify the noises in common and realistic distributions. How-
ever, this point is not so crucial since these bad properties are
mitigated thanks to the effects of the wavelet transform. The
wavelet transform tends to make the input samples Gaussian
and to decorrelate them according to the degree of smooth-
ness of the chosen wavelet.

4. RESULTS

We used the MIT/BIH arrhythmia database [13] to evaluate
our detector. The database consists of 48 thirty-minute re-
cords. Medical annotations give reference for statistical de-
tection performance evaluations.

We tested our algorithm on the first 10 free available records.
Comparing the obtained results (Table II) with other algo-
rithms [1,2,8] tested on the same database proves the effi-
ciency of our method. On this beginning of the database, the
algorithm produces 99.68 % of good detection.

No particular rules for the detection have been investigated,
contrary to [8] where many rules have been developed, espe-
cially fitting the studied database. We only apply a 2 Hz high
pass filter to remove the dc component on the raw signals
and consider a refractory physiological delay of 200 ms after
detection.

Note the rather good results obtained for the record #105
which is considerably noisy. Only the neural-network-based
supervised method achieves better results. This method how-
ever requires a constraining learning phase.

Table II Results of the Klauder wavelet based QRS detec-
tion algorithm for the MIT/BIH database

Tape Total FP FN Failed Failed
#) (beats) (beats) (beats) detection detection
(FP+FN) (%)
100 2273 0 0 0 0
101 1865 2 2 4 0.22
102 2187 0 1 1 0.05
103 2084 0 0 0 0
104 2229 2 10 12 0.54
105 2572 39 12 51 1.98
106 2027 0 1 1 0.05
107 2137 0 1 1 0.05
118 2278 0 0 0 0
119 1987 0 0 0 0
TOTAL 21639 43 27 70 0.32

5. CONCLUSION AND PERSPECTIVE

We have introduced a new QRS waveform detector. The de-
tector guarantees performance and robustness. Performance
is obtained thanks to an ECG pattern that gives the shape of
the matched filter. Robustness is obtained by a time-
frequency local filtering under a GLRT strategy. The interest
of our detector principally relies on its automatic parameteri-
sation: an ECG extracted pattern permits to select the mother
wavelet and the time-scale discretisation. Furthermore, the
good properties of the Klauder wavelet ensure good time
location accuracy which is necessary for HRV analysis.

Unlike neural networks techniques, which require long learn-
ing periods before running, our detector rapidly adapts the
filter for each recording.

Since the detector is based on a model, the technique can be
used for QRS waveform classification. In particular, we will
compare the classification rates with those obtained with the
method proposed in [14], where the most adapted time scale
representation is selected. The selection is made on the pa-
rameters defining the mother wavelet, leading to a minimum
bad-classified rate.
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