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ABSTRACT

Recently, there has been a growing interest for wavelet
frames corresponding to the union of an orthonormal wavelet
basis and its dual Hilbert transformed wavelet basis. How-
ever, most of the existing works specifically address the
dyadic case. In this paper, we consider orthonormal M-band
wavelet decompositions, since we are motivated by their ada-
vantages in terms of frequency selectivity and symmetry of
the analysis functions, for M > 2. More precisely, we es-
tablish phase conditions for a pair of critically subsampled
M-band filter banks. The conditions we obtain generalize a
previous result given in the two-band case [1]. We also show
that, when the primal filter bank and its wavelets have sym-
metry, it is inherited by their duals. Furthermore, we give a
design example where the number of vanishing moments of
the approximate dual wavelets is imposed numerically to be
the same as for the primal ones.

1. INTRODUCTION

Critically subsampled two-channel filter banks with perfect
reconstruction are proved to be efficient tools in the field of
signal or higher dimensional data processing, especially for
denoising, detection, or compression. Wavelets have demon-
strated excellent performance in numerous applications but
their successes are mitigated by some natural limitations: a
lack of shift-invariance and some design restrictions.

On the one hand, a classical drawback of the real dis-
crete wavelet transform (DWT) is its shift-variance and its
poor directionality in higher dimensions. One possible solu-
tion comes from the adjunction of some redundancy in the
transform. Shift-invariant wavelet transforms [2] suppress
shift dependencies, at the expense of an increased compu-
tational cost and a redundancy factor depending on the de-
composition level, typically log, N in one dimension, N be-
ing the number of samples. Less demanding solutions have
been developed, by the use of complex filters for real signals
(we refer to [3] for an overview and design examples), or by
employing other wavelet frames. One of the most interest-
ing and effective proposal is the dual-tree discrete wavelet
transform, proposed by N. Kingbury [4]. In the later and
companion works, two wavelet trees are developed in paral-
lel, with root filters being offset by one half sample to each
other. The resulting analysis yields a limited redundancy of
24 for d-dimensional signals, with a much lower shift sen-
sitivity than the DWT and much better directionality. The
design of the associated filters was recently addressed and
extended by I. Selesnick [1], through an — at least approx-
imate — Hilbert pair formulation for the dual” wavelets.
The later result was recently proved to be the “only” pos-
sible solution in [5]. Selesnick also proposed the double-
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density DWT, with a redundancy factor of (3¢ —1)/(2¢ —1).
He finally combined both frame approaches in [6]. An ex-
tension of the dual-tree DWT named phaselets has recently
been introduced by R. Gopinath in [7]. The advantages of
Hilbert pairs have been earlier recognized by other authors,
such as P. Abry et al. [8] or W. Freeman et al. [9]. Wavelet
frames are also addressed by oversampling, as in the context
of shiftable transforms [10]. More recently, several authors
have proposed a projection scheme with an explicit control
of the redundancy [11]. The developed framework resulted
in the original 3-band complex filter bank described in [12].
Another recent approach is the analytic” wavelet threshold-
ing developped by S. Ohlede et al. [13], in the context of
denoising.

On the other hand, classical 2-band wavelets also suffer
from constraints in their design. In image applications,
filter symmetry is often considered as important to minimize
boundary artifacts and save computations, as well as finite
support for dealing with realistic finite length signals. But
compactly supported, real, orthogonal wavelets cannot have
linear phase, except for the Haar system, whose regularity
is far too limited. As a consequence, some authors have
developed quickly decaying wavelets, nearly symmetric
filters (such as the symmlets), symmetric biorthogonal filters
(such as the 9/7 or 5/3 used in the JPEG 2000 standard) or
“almost real” complex filters (i.e. with relatively few energy
remaining in the imaginary component of the filtered signal,
e.g. in [14]). Although having been very successful in
many applications, the dyadic decomposition is sometimes
considered relatively coarse in the highest frequency sub-
bands. Furthermore, since the high-pass filter in the 2-band
scheme heavily depends on the low-pass filter, the wavelet
filters’ design sometimes lacks degrees of freedom. These
constraints have altogether motivated the development of
more general M-band structures such as M-band wavelets
[15] or M-channel Lapped Transforms.

Based on the aforementioned shortcomings and poten-
tial workouts to alleviate some of the DWT drawbacks, we
propose in this work to extend the dual-tree framework to M-
band wavelets. In other words, we develop a redundant de-
composition on two M-band orthogonal wavelet bases, where
the M — 1 wavelets are required to be Hilbert pairs. The or-
ganization of the paper is as follow : in Section 2, we explain
how to construct the related M-band filter bank. In Section 3,
we provide a design example using the resulting conditions.
Some conclusions are drawn in Section 4.
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2. CONSTRUCTION OF M-BAND HILBERT PAIRS
2.1 Problem statement

Let M be an integer greater than or equal to 2. Recall
that an M-band multiresolution analysis is defined by one
scaling function yy € L?(R) and (M — 1) mother wavelets
W € L2(R), m € {1,...,M — 1} [15]. These functions are
solutions of the following scaling equations:

vme {0,....M—1},

—=vn (37) = L mallvoe—0. (1)

k=—oo0

where the sequences (hy,[k])iez are real-valued and square
summable. The Fourier transform of (/,,[k])iez is a 27-
periodic function, denoted by H,,. For the set of functions

UMMy, (M~ Tt — k), (j,k) € Z*} to correspond to
an orthonormal basis of L?(R), the following para-unitarity
conditions must hold:

Y(m,m') € {0,...,. M —1}2,
M—1 2T . 21
pZ:()Hm <(D+Pﬁ> Hml <00+Pﬁ> :M5n1—m'7 (2)

where §,, = 1 if m = 0 and 0 otherwise. In this case, cas-
cading the M-band para-unitary analysis and synthesis filter
bank, depicted in Fig. 1, allows to decompose and to recon-
struct perfectly a given signal.
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Figure 1: Analysis/synthesis M-band para-unitary filter bank

Our objective is to construct a “dual” M-band multireso-
lution analysis defined by a scaling function l//(];I and mother
wavelets i, m € {1,...,M —1}. More precisely, the mother
wavelets will be obtained by a Hilbert transform from the
“original” wavelets y,,, m € {1,...,M —1}. In the Fourier
domain, the desired property reads:

vme{l,... .M—1}, ¥(0) =—sign(@) (o), (3)
where a denotes the Fourier transform of a function a and
sign is the signum function. Furthermore, the functions !
are defined by scaling equations similar to (1) involving real-
valued sequences (gm[k])icz. In order to generate a dual

M-band orthonormal wavelet basis of L?(R), the Fourier
transforms G, of these sequences must also satisfy the para-
unitarity conditions as expressed by Eq. (2).

2.2 Sufficient conditions

If we further impose that:

v(@)] = [Wo(w)), @)

the scaling equations combined with the Hilbert condition (3)
lead to

Vme{0,....M—1},  Gu(w)=e""H,(0), (5)

where 0, is 27-periodic. These functions should also be odd
(for real filters) and thus only need to be determined over
[0, ]. Assuming that (2) is satisfied, it is then straightforward
to verify that the para-unitarity conditions for the dual filter
bank hold if the following condition holds:
(P). for all (m,m’) € {0,...,M — 1}* with m < m/,

Oyt = Oy — O is @ 27/ M-periodic function.

We are then able to state the following result whose proof is
omitted here:

Proposition 1. Assume that Conditions (5) hold. A neces-
sary and sufficient condition for (3) to be satisfied is:

Vme{l,....M—1}, oo, (%) +B(w) = gsign(a))[Zﬂ],
(6)

where .
B@) =Y o(77)- @

i=1
The above two relations constitute a generalization to the
M-band case of a famous result by Selesnick [1] restricted
to dyadic wavelets. It is worth noting that the function f is
given by the following “additive” scaling equation:
0} o
0)=B(47)+60(5;)- 8
B@) =B (55)+60 (5 ®)
2.3 Linear phase solution
In the 2-band case (under weak assumptions), 6y verifying
Egs. (6) and (7) is a linear function on [—7, [ [1]. In the M-
band case, we will slightly restrict this constraint on a smaller
interval by imposing:
Vo € [Oa 27[/M[7 90((0) =Y, 9

where ¥ € R. Using Eq. (8), after some tedious calculations,
we prove the following result.

Proposition 2. Under the three conditions (5), (P) and (9),
there exists a unique solution to Eq. (6) (mod. 27), given by

Vme {1,....,M —1} Vo €]0,27/M|,

T M

m =5 AW, 1

wn(0) =5 -Fo. (10)

and
M 2r 27
vpe{o,...,bJ—l},me[pﬁ,(pﬂ)ﬁ[,
M—1
0(w)=——w—pr. (11)

2
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It should be noted that unlike in the 2-band case, 6y may
exhibit discontinuities on ]0, [ due to the p7 term. We sub-
sequently deduce that the functions 6,,, m € {1,....M — 1},
should be chosen all equal to

T O |
0 if o=0.

2.4 Symmetry properties

As already pointed out, one of the main advantage of the
M-band case with M > 2 is to allow the construction of
non-trivial real orthonormal bases with compact support and
symmetric (or antisymmetric) wavelets. Assume that these
properties are fulfilled for the primal filter bank. Although
the Hilbert transformed wavelets are no longer compactly
supported, we now show that the dual filters and wavelets still
inherit these symmetry properties. Indeed, it can be proved
that:

Proposition 3. Let the conditions established in Section 2.3
be satisfied. If the low-pass impulse response (holk])iez
is symmetric w.rt. (L—1)/2 where L € Z and, for m €
{1,...,M =1}, (hu[k])kez is symmetric (resp. antisymmet-
ric) wrt. (L —1)/2, then (go[k])kez is symmetric w.rt.
(L+M)/2—1and, forme{1,...,M—1}, (gmlk])kez is an-
tisymmetric (resp. symmetric) w.rit. L/2 — 1.

We deduce from this result that, if Yy is symmetric w.r.t.

L—1
A 13
2M—1) (13)
and, form € {1,...,M — 1}, y,, is symmetric (resp. antisym-
metric) w.r.t. T, then 1[/(1)“1 is symmetric w.r.t. T+ 1/2 and, for
me{l,...,M—1}, yH is antisymmetric (resp. symmetric)

w.rt. T.

3. DESIGN EXAMPLE

To illustrate the interest of the above conditions, we consider
a 4-band (M = 4) para-unitary filter bank and design its dual
filter bank.

3.1 Design of the Filters

The primal filter bank is taken from [16]. It consists in four
finite impulse response (FIR) filters of length 16, generat-
ing regular, orthonormal and symmetric basis functions. The
corresponding filter coefficients are listed in the first four
columns of Table 1.

The frequency responses of these filters can be calculated
and the frequency responses of the dual filter bank can be de-
duced using Egs. (5), (11) and (12). Unfortunately, the re-
sulting filters are not FIR and we subsequently realize causal
FIR approximations of the dual filters. These approxima-
tions are obtained by minimizing the L? norm of the error
w.r.t. the desired frequency responses. As the quality of the
approximations obviously depends on the filter lengths, we
introduced a 2 sample delay in the original filters so as to
allow more than 16 coefficients for the dual ones. Further
constraints were added in the design process, namely the de-
sired symmetry properties and vanishing moment conditions.
The latter conditions are useful in order to introduce regular-
ity conditions on the approximate dual wavelets. Recall that

a necessary and sufficient condition for the wavelets to have
K vanishing moments is [15]:

1 7e—lM(1) K
Go(w) = (ﬁ) O(w), (14)

where Q( ) is a polynomial function of e . This relation is
also equivalent to the following constraints for the sequences

(gm[k])kEZs m>1:
Vme{l,....M—1},Yke{0,....K—1}, Y n'gulk] = 0.
k
(15)

As all the considered constraints are linear, we have handled
them by projection techniques. The coefficients listed in the
last four columns of Table 1 have been obtained in this way,
by setting K = 2, which corresponds to the same number of
vanishing moments as the primal decomposition.

One of the potential problem of the proposed approach is
that it does not guarantee that the designed filter bank is per-
fectly para-unitary. One could therefore add para-unitarity
constraints in the related optimization problem. This how-
ever appeared unnecessary in the considered simulation ex-
ample, as we verified that

max | Y g K| guw [k — MO — 8,y &| <3.9107°. (16)
k

mm’

Although the upper bound is not zero as it should be ideally,
its value may be considered small enough for common sig-
nal/image analysis or denoising tasks.

3.2 Associated basis functions

Given the subband filters coefficients listed in Table 1, we
constructed the functions y;, and yil, for m € {0,...,3},
by an iterative numerical approach using the scaling equa-
tions (1).

Fig. 2 represents the scaling function and the wavelets as-
sociated to the primal 4-band filter bank. The scaling func-
tion and the wavelets associated to the dual 4-band filter bank
are plotted in Fig. 3. We observe that the constructed dual
wavelets possess regularity and satisfy the symmetry proper-
ties stated in Proposition 3. Symmetry axes are represented
by dotted lines.

4. CONCLUSIONS

In this paper, we have proposed an extension of the work [1]
by I. Selesnick on Hilbert transform pairs of wavelet bases
to the orthogonal M-band case, by establishing phase condi-
tions on the related filters.

We have designed filters of the dual filter bank. The re-
sulting wavelet bases exhibit attractive symmetry and regu-
larity properties. These encouraging design results will be
adapted to forthcoming signal processing applications, espe-
cially in the field of seismic data. Taking advantages of the
Hilbert pair conditions and M-band features which offer ad-
ditional degrees of freedom, this new transform is promising
for denoising purposes. Furthermore, the extension to 2-D or
higher dimensions yields an improved directionality.
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n || ho(n) | mn) | ha(n) | hs(n) go(n) | gi(n) | g(n) | g(n)
0 - - - - -0.0039 | -0.0017 | -0.0078 | 0.0043
1 - - - - -0.0057 | 0.0024 | -0.0170 | 0.0169
2 0.0305 | -0.0199 | 0.0199 | -0.0305 || 0.0145 | -0.0403 | -0.0010 | -0.0182
3 -0.0199 | 0.0305 | 0.0305 | -0.0199 || 0.0086 | -0.0136 | 0.0450 | -0.0543
4 || -0.0584 | 0.0381 | -0.0381 | 0.0584 | -0.0074 | -0.0043 | -0.0318 | 0.0424
5 -0.0381 | 0.0584 | 0.0584 | -0.0381 || 0.0008 | 0.0025 | 0.1204 | -0.0495
6 | -0.0367 | 0.1688 | -0.1688 | 0.0367 || -0.0879 | 0.2513 | -0.1305 | -0.0396
7 0.1688 | -0.0367 | -0.0367 | 0.1688 || -0.0548 | 0.3678 | -0.3003 | 0.3032
8 0.4095 | -0.5442 | 0.5442 | -0.4095 || 0.0923 | -0.2055 | 0.6121 | -0.4882
9 0.5442 | -0.4095 | -0.4095 | 0.5442 0.2542 | -0.7175 0 0.5661
10 0.4910

11 0.5908

Table 1: Coefficients of the synthesis filter banks for M = 4; half the coefficients are provided: hg, hy (resp. hj, h3) are
symmetric (resp. antisymmetric) of length 16; go is symmetric of length 23, g, g3 are symmetric of length 19 and g, is

antisymmetric of length 19.
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