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ABSTRACT 
The key problem in any decision-making system is to gather 
as much information as possible about the object or the phe-
nomenon under study. In the case of the radar targets the 
frequency and angular information is integrated to form a 
radar image, which has high information content. A supper-
resolution technique (MUSIC 2D) is used in the paper in 
order to reconstruct the target image. A supervised self-
organizing neural network was developed to classify the 
images obtained in this way for ten different radar targets in 
an anechoic chamber. 

1. INTRODUCTION 

The basic approach for radar target recognition (see figure 1) 
is to extract some appropriate features, measure these fea-
tures from the targets or target classes to be recognized at 
every (aspect and elevation) viewing angle anticipated, and 
finally use these features to train a classifier [1]. Recognition 
performance is determined by the quality of the target fea-
tures used. The more precisely they represent the characteris-
tics of the targets, the better the classification results are.  
The spatial resolution has a great influence on this point [2]. 
This is the reason for we have chosen a superresolution tech-
nique to reconstruct the images of the radar targets. 

 
Figure 1: Integrated system for radar based situation 

assesment 

The rest of the paper is organized as follows. Section II de-
scribes radar imaging algorithm using the MUSIC-2D (Mul-
tiple Signal Classification) method. Section III present the 
classifier developed to recognize this type of images. Some 
sample results are provided in Section IV and finally several 
conclusions are drawn in Section VI. 

2. MUSIC-2D METHOD 

Let us consider a target defined by SCN  scattering centers, 
illuminated under a given aspect set{ } 0.. 1n n Nβ

β
= −

, with a 

signal, whose band is sampled in FN  points{ } 0.. 1Fm m Nf
= −

. 

The echo signal can be then expressed with the following 
relationship: 
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where { } 1.. SCk k Nq
=

 represent the reflection coefficients of the 

scattering centers and ( , )u m n  stand for the zero mean, 
Gaussian white noise samples, with the variance 2σ .  
A resampling procedure involving 2D interpolation is per-
formed prior to the image reconstruction in order to realize a 
Cartesian grid with uniformly sampled data in Eq. (1). The 
new variables are defined as: 
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and the corresponding resampling technique is shown on 
figure 2. 

 
Figure 2: Resampling technique for reformatting radar data 

from polar into Cartesian coordinates 

After resampling and interpolation Eq. (1) becomes: 
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In order to take into account all the values of m  and n  it is 
more convenient to express this relationship in the follow-
ing matrix form: 

A= +s q u   (4) 
where: 
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A is a SCMN N×  matrix related to the scattering center de-
lays, while ( , )x ya  is the mode vector.  
The MUSIC-2D involves, as a first step, the estimation of 
the autocorrelation matrix of the radar data, which is 
defined as: 

[ ]H
ssR = ssE    (5) 

where s  is the echo signal and [ ]⋅E  stands for the operator 
of statistical average. 
The eigenanalysis of this matrix is then performed and the 
eigenvectors obtained are divided between the signal and 
the noise subspaces. The MUSIC-2D algorithm is based on 
the orthogonality relationship between the two subspaces. 
Let us define the ( )SCMN MN N× −  matrix nE , whose 
columns are the ( )SCMN N−  eigenvectors corresponding 
to the noise subspace. The location of each scattering center 
can be then estimated by searching the maxima of the 
function:  
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where ( , )x ya  is the mode vector defined by Eq. (4). 
The estimated autocorrelation matrix is calculated by aver-
aging a set of observations. This averaging process would 
lead to an autocorrelation matrix of full rank only if the 
contributions of different scattering centers were decorre-
lated. However, in radar applications, usually only one data 
vector is available. Furthermore, the echo signals produced 
by scattering centers are coherent. Hence, increasing the 
number of observations does not have any effect on the 
autocorrelation matrix rank.  
In order to restore the full rank of the autocorrelation ma-
trix, even when only one data vector is available, we used a 
2D generalization of the spatial smoothing method [3], well 
known for its effectiveness in the 1D case. The principle of 
this technique is shown on figure 3. 

 
Figure 3: Principle of the 2D spatial smoothing technique 

As it can be readily seen on figure 3, a number of 
1 2( 1 ) ( 1 )L M p N p= + − × + −  submatrices can be defined 

using the interpolated data. Each of them is a 1 2p p×  ma-
trix. Let ls  the column vector obtained from the lth subma-
trix. The corresponding partial autocorrelation matrix can 
be then estimated as: 

ˆ H
l l lR = s s    (7) 

The complete autocorrelation matrix is finally obtained 
using the following relationship: 
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The number of submatrices determines the decorrelation 
degre of the echo signals from the scattering centers. On the 
other hand 1p  and 2p  must be large enough to allow a very 
high resolution. A good trade off between the two con-
straints can be achieved if 1p  and 2p  are chosen about a 
half of M  and N  respectively. 

3. SART CLASSIFIER 

The SART (Supervised ART) [4] uses the principle of proto-
type generation like the ART neural network, but unlike this 
one, the prototypes are generated in a supervised manner. It 
has the capability to learn fast using local approximations of 
the class pdf and its operation does not depend on any chosen 
parameter. 
Each class { }( )

1.. j

j
j k k N

C
=

= x  is represented by one or several 

prototypes { }( )

1.. j

j
k k P=
p  which approximate the modes of the 

underlying probability density function (pdf), with Nj and Pj 
the number of vectors and of the prototypes corresponding to 
the class j. The prototypes are equivalent to the codebook 
vectors used by the vector quantization techniques or to the 
centers used by the radial basis function based training algo-
rithms. 
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The training algorithm starts by randomly setting one proto-
type for each class. The basic idea is to create a new proto-
type for a class whenever the actual set of prototypes is not 
able anymore to classify the training data set satisfactorily 
using the nearest prototype rule: 

( ) ( )
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j

i j
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C
= =

− = − ⇒ ∈x p x p x  (9) 

If, for example, the vector x previously classified do not ac-
tually belongs to the class Ci, but to another class, say Cr, 
then a new prototype ( )

1r

r
N + =p x  will be added to the list of 

prototypes of the class Cr. The prototypes are updated during 
each epoch using the mean of the samples which are cor-
rectly classified by each of them: 
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If a prototype does not account for a minimum number of 
training vectors (typically 1) it is canceled because it is sup-
posed to represent outliers: 

{ }( ) ( )card is canceledi i
l t lA N≤ ⇒ p  (12) 

The updating process is repeated as long as there are classifi-
cation errors on the training samples and as long as it dy-
namically changes the location of the prototypes. 
The classifier can be easily fitted with a neural network struc-
ture in a very similar manner to the LVQ (Learning Vector 
Quantization) or RBF (Radial Basis Function) neural net-
works (see figure 4).  

 
Figure 4: SART classifier structure 

Just like for this two neural networks, the output level is con-
stituted by a MADALINE (Multiple Adaptive Linear Net-
work) [5]. It is aimed to combine the hidden layer outputs, 
such as only one output neuron represent each class. The 
Widrow-Hoff rule is used to train this layer: 
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where wij and bi are the neuron weights and bias, yj stand for 
the outputs of the hidden layer, di and oi denote the desired 
and real neuron outputs and η is the learning rate.  
The number of the neurons on the hidden layer is equal to the 
number of prototypes. Each neuron computes firstly the dis-
tance between the test vector x and the associate prototype. 
This distance is then normalized in order to take into account 
the different spreads of the clusters represented by the proto-
types: 

max maxk k k k kd d d d= = −x p%  (14) 
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The neuron outputs are finally calculated using the following 
relationship: 

( ) 12( ) 1k k ky f d d
−

= = +% %  (16) 

The choice of the function f has been motivated by the fact 
that its value at the cluster boundaries equals 0.5. Indeed, it 
can be readily seen that: 

max
( ) (1) 0.5

k kk d df d f= = =%  (17) 
An important property of the described algorithm is that it 
needs no initial system parameter specifications and no pre-
specified number of codebook or center vectors. Indeed, 
unlike for the RBF or LVQ neural network, the number and 
the final values of the prototypes are automatically found 
during the training process for the SART classifier. 

4. SIMULATION RESULTS 

The classification technique previously described have been 
used to classify the MUSIC-2D images of 10 scale reduced 
(1:48) targets (Mirage, F14, Rafale, Tornado, Harrier, 
Apache, DC3, F16, Jaguar and F117). The real data were 
obtained in the anechoic chamber of ENSIETA (Brest, 
France). 
Each target is illuminated in the acquisition phase with a fre-
quency stepped signal. The data snapshot contains 32 fre-
quency steps, uniformly distributed over the band 
B=[11650,17850] MHz, which results in a frequency incre-
ment ∆f=200 MHz. Consequently, the slant range resolution 
and ambiguity window are given by: 

/(2 ) 2.4 msR c B∆ = ≅ , /(2 ) 0.75 msW c f= ∆ =  [18] 
For each of the 10 targets 100 images are generated corre-
sponding to 100 angular positions, from -50 to 44.50, with an 
angular increment of 0.50. An example is provided on the 
figure 5 for the Mirage aircraft scale reduced model. Note 
that the scattering centers of the target are clearly identified 
and their relative positions are specific for each target. 
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Figure 5: Image of a Mirage aircraft obtained with MUSIC-

2D method 
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When all the images are available, the training set is formed 
by randomly selecting 1/2 of them, the others being consid-
ered as the test set. A Monte-Carlo analysis has been per-
formed in order to estimate the classifier performances. The 
mean classification rates for each classifier and each target 
are also shown on figure 6. 
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Figure 6: Mean classification rates for each target 

5. CONCLUSION 

The proposed approach has been validated as an appropri-
ate concept for the classification of the radar targets based 
on their 2D superresolution images. It is mainly character-
ized by: 

a) precision, given by the use of a superresolution algo-
rithm (MUSIC-2D);  

b) effectiveness, provided by a the self-organizing clas-
sifier (SART); 

As a future work we are going to made the classification sys-
tem invariant when the pitch and the roll motion components 
of a radar target are also considered. The basic idea is to train 
the classifier with a vector set issued from a discretization of 
the whole angular domain 1.. , 1.. , 1..{ , , }

ln k l n N k N l Nβ ε
β ε α = = =  rather 

than for azimuth aspects only. In this way the recognition 
system will be able to classify the targets irrespective of their 
position in the 3D space. 
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