
LOW-COST SMART TRANSCODING ALGORITHM 
BETWEEN ITU-T G.729 (8 KBIT/S) AND 3GPP NB-AMR (12.2 KBIT/S) 

Mohamed Ghenania, Claude Lamblin  

FRANCE TELECOM R&D – DIH/IPS, 2 avenue Pierre Marzin, 22307 Lannion Cedex, FRANCE  
 email: [mohamed.ghenania, claude.lamblin]@francetelecom.com 

ABSTRACT 
Networks interconnection causes interoperability problems 
between different speech coding formats. Today, tandem 
transcoding solutions (decoding/re-encoding) are generally 
used in communication chains. However intelligent transcod-
ing solutions which exploit similarities between formats have 
been recently proposed in order to overcome tandem draw-
backs (computational complexity, algorithmic delay, speech 
degradation). This paper gives an overview of these intelli-
gent transcoding methods for CELP coders. Then, a low-cost 
intelligent transcoding algorithm between ITU-T G.729 (at 8 
kbit/s) and 3GPP NB-AMR (at 12.2 kbit/s) is proposed. It is 
composed of four parts corresponding to the four CELP pa-
rameters conversions: LSP coefficients, fractional pitch lags, 
fixed codevectors and gains. A novel and computationally 
efficient method is described here for the fixed codevectors. 
The ACELP search is strongly focused on privileged posi-
tions, what considerably reduces the number of tested 
combinations. Objective and subjective quality tests show 
that this smart transcoding algorithm achieves a quality very 
close to that of the tandem while strongly reducing complex-
ity with a shorter algorithmic delay. 

1.  INTRODUCTION  

In recent years the demand for high quality communications 
has considerably grown with the multiplication of various 
terminals. To provide a Universal Multimedia Access to 
users, various networks have been interconnected in which 
different speech coding standards are adopted. This causes 
an interoperability problem between these incompatible 
standards though, at medium bitrates (6-16kbit/s), most of 
the current speech coding standards are based on the well 
known code-excited linear prediction (CELP) coding model. 
The simplest solution to overcome this issue consists in de-
coding one standard compressed frame and re-encoding the 
generated signal by a second standard speech coder. This 
conventional method called tandem transcoding suffers from 
several problems such as computational complexity, algo-
rithmic delay and speech quality degradation. Recently, in-
telligent transcoding solutions have been proposed to over-
come these problems: they exploit similarities between 
CELP standards and are based on parameter conversion.  
This paper presents a survey on intelligent transcoding tech-
niques between standard CELP coders (section 2). Then, 
section 3 proposes an efficient transcoding algorithm be-
tween ITU-T G.729 coder at 8 kbit/s [1] and 3GPP NB-

AMR at 12.2 kbit/s [2] and describes a novel and fast 
method for ACELP codevectors transcoding. Section 4 
compares the performances of this transcoding solution with 
those of the tandem according to three criteria: quality with 
objective and subjective tests, complexity and algorithmic 
delay. Finally, section 5 concludes this paper. 

2. CELP TRANSCODING METHODS OVERVIEW 

To translate a frame from a first coding format A into a sec-
ond coding format B, the most current solution is to cascade 
a decoder of format A with a coder of format B. However, 
this conventional tandem transcoding has several drawbacks. 
First, this operation has a significant cost as a coding opera-
tion is computationally expensive. Moreover, the delay is 
increased by the sum of the delays brought by decoder A and 
coder B. This can reduce interactivity if several transcodings 
occur in a communication chain. Finally, a tandem transcod-
ing introduces distortion on the signal since coding B is per-
formed on decoded signal rather than on the original signal.  
In order to overcome these problems, several alternatives to 
tandem transcoding have been proposed. These intelligent 
transcoding solutions reduce computational complexity and 
delay while achieving equivalent quality than that of the tan-
dem. They exploit similarities between coding formats. All 
current CELP coders estimate, quantize and transmit the 
same type of parameters: LSP coefficients, adaptive code-
book (ACB) lags and associated gains, fixed codevectors 
(FCB) indices and associated gains. The differences between 
coders can lie in the parameter estimation, the frequency at 
which they are computed or their quantization method. Con-
sequently, three cases are possible to transcode a parameter.  
If a parameter is identically computed and quantized by the 
two coding formats A and B, a mere copy of the binary field 
associated with this parameter from bitstream A to bitstream 
B is performed. Transcoding is done at the binary level. This 
is the case of the ACB lag in [3, 6, 7] and of the FCB in [6, 
7].  
If the parameter is quantized differently, it must be re-
quantized with the quantization scheme of format B. More-
over, if A and B do not calculate this parameter at the same 
frequency (for instance if their subframe lengths are not 
equal), an interpolation (or a decimation) is made on this 
parameter before quantization. This kind of operation (re-
quantization, interpolation, decimation) can be carried out by 
decoding the parameter without going up until signal level. 
The conversion is realized at parameter level. LSP coeffi-
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cients are generally transcoded at this level [3-10]. Parameter 
level conversion has also been proposed for ACB gain [6, 7] 
or FCB gain [6, 7, 10].  
Finally, for the same parameter, if formats A and B work in 
too different ways, it is necessary to decode the signal and to 
compute the parameter as that is done in the tandem method. 
This method is often used for FCB index [4, 5, 8, 9], but also 
for ACB gain [3, 9, 10] and FCB gain [3, 4, 5, 8, 9]. This 
transcoding can be seen as a partial tandem as only some 
parameters are computed as in conventional tandem 
transcoding. In general, it is performed at signal level. Never-
theless, in-between alternatives exist: parameter can be com-
puted in excitation level (e.g. gains in [7]). In addition, some 
solutions have been developed to reduce complexity in signal 
level by taking into account some of first format information. 
For example for ACB lag estimation, the range of open-loop 
pitch search can be constrained around the lag value of A [4, 
5, 8, 9, 10]. Similarly, the exploration of the G.723.1 multitap 
adaptive gain codebook can be restricted according to the 
first format monotap gain [4, 5, 8]. Some solutions have also 
been proposed to limit the exploration of the FCB codebook 
[3, 10].  

3. PROPOSED TRANSCODING ALGORITHM FOR 
ITU-T G.729 AND 3GPP NB-AMR  

These three conversion levels (binary, parameter or signal) 
have been used to develop an efficient transcoding algorithm 
between ITU-T G.729 coder at 8 kbit/s and 3GPP NB-AMR 
at 12.2 kbit/s. Based on the algebraic code-excited linear 
prediction (ACELP) technology, these coders are multirate 
standards: ITU-T G.729 speech coder has three modes (main 
mode at 8 kbit/s, and two other modes at 6.4 and 11.8 kbit/s) 
and 3GPP NB-AMR has eight modes from 12.2 down to 
4.75 kbit/s. In this paper, only ITU-T G.729 main mode and 
the 3GPP NB-AMR highest bit rate mode 12.2 kbit/s, also 
called Enhanced Full Rate (EFR), are considered.  

 G.729 EFR 
subframes 2×5ms 4×5ms 

LSP 1 VQ per 10ms 1 SMQ per 20ms 

ACB lag Monotap 1/3 Monotap 1/6 

FCB pulses 4 pulses 10 pulses 

ACB gain  SQ (4bits) 
FCB gain  VQ on 7bits SQ (5bits) 

Table 1: Similarities and differences of G.729 and EFR 

 
The two coders have similarities and differences summarized 
in table 1. G.729 operates on 10 ms frames (80 samples) 
whereas EFR operates on 20 ms frames, yet their subframe 
lengths are equal (5 ms/ 40 samples). For each parameter of 
the four CELP parameters (LSP, adaptive lags and fixed 
codevectors, associated gains), intelligent transcoding solu-
tions have been proposed that exploit these similarities and 
overcome these differences. In particular, we introduce a 
novel and fast method to transcode the ACELP fixed-
codevectors.  

3.1 LSP conversion 
Both coders perform a 10th order LP analysis every 10ms 
(i.e. once per G.729 frame and twice per EFR frame) and use 
LPC to LSP conversion before MA predictive quantization. 
Nevertheless, G.729 quantizes only one set of LSP coeffi-
cients with a switched 4th order predictive vector quantiza-
tion on 18 bits. Note also that G.729 LP analysis introduces a 
5 ms look-ahead. In EFR, LP analysis is performed twice 
per frame. The two sets of LP coefficients per frame are 
jointly quantized on 38 bits with split matrix quantization 
(SMQ) of 1st order MA prediction LSF residuals. 
Here, a conversion at parameter level is used to transcode: 
LSP from format A are decoded and re-quantized using for-
mat B quantization scheme. Before quantization, the LSP 
mapping between G.729 and EFR is: 
EFR→ G.729: 
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where 729G

nLSP  is the set of LSP for G.729 n-th frame and 
EFR

knLSP _  is the set of LSP for the k-th subframe (k=0, 1, 2 or 
3) of EFR n-th frame.  

The computational complexity is strongly reduced because 
LP analysis and LPC into LSP conversion are omitted. Fur-
thermore, the algorithmic delay is reduced by 5ms because 
the LP analysis look-ahead is removed.  
Moreover, such transcoded LSP match the original signal 
better than the tandem ones. Figure 1 shows for a voiced 
subframe that LPC spectrum obtained by transcoding is 
closer to the original spectrum which is the G.729 LPC spec-
trum in this case (transcoding G.729 to EFR). 
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Figure 1: Comparison of LPC spectrum 

G.729 to EFR EFR to G.729 
SD       

(dB) Mean Outliers 
(2-4dB) 

Out-
liers 

(>4dB) 
Mean Outliers 

(2-4dB) 

Out-
liers 

(>4dB) 

Tandem 2.71 52.38% 5.40% 2.29 32.59% 1.01% 

Transcoder 1.08 0.52% 0% 1.14 1.18% 0% 

Table 2: Spectral distortion on LSP of tandem and transcoder  

Table 2 shows that transcoded LSP are closer to "original" 
(i.e. quantized only once) LSP than those obtained by the 
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tandem. Indeed, the mean spectral distortion (between tan-
dem or transcoded LSP and original quantized LSP) calcu-
lated on 18 French sentences (6 for male, 6 for female, 6 for 
children) is smaller for transcoder case. The tandem quan-
tizes and transmits the LSP calculated on a synthesis signal, 
different from the original signal because of the distortion 
brought by the first coding/decoding whereas the transcoded 
LSP are obtained by a mere re-quantization of original LSP 
already quantized/dequantized by codec A. 

3.2 Pitch delay conversion 
For both coders, the adaptive codebook is searched with a 
combined open-loop/closed-loop search. For even sub-
frames, the pitch lag is absolute coded with a fractional reso-
lution for lags below a lag bound and integer resolution only 
for greater lags. For odd subframes, the lag is delta coded 
relative to the lag of the previous subframe with a fractional 
resolution. Besides these common features, pitch models 
used by G.729 and EFR are slightly different: EFR fractional 
resolution is finer (1/6) than G.729 one (1/3), EFR absolute 
lags range is wider [17 3/6; 143] than G.729 one ([19 1/3; 
143]), the lag bound between fractional and integer resolu-
tions is 95 for EFR and 85 for G.729. These differences are 
summarized in table 3. 
Pitch conversion can be made either at binary level (i.e. 
without decoding the pitch index chosen by coder A) or at 
parameter level. The conversion uses tables exploiting the 
inclusion of G.729 absolute lags codebook in the EFR abso-
lute lags codebook and the rounding of finer fractional reso-
lutions.  

 Even subframes Odd subframes 
Fractional Integer Fractional Precision 

frac Range Range frac Range 
G.729 1/3 191/3   842/3 85   143 1/3 -52/3   42/3

EFR 1/6 173/6   943/6 95   143 1/6 -53/6   43/6

Table 3: Pitch models of G.729 and EFR 

Here, the strong similarities between the two pitch models 
allow to greatly reduce the computational complexity of the 
pitch lag conversion as none of the different analysis (open-
loop analysis, integer closed-loop analysis-by-synthesis and 
fractional exploration) need to be performed. 

3.3 Fixed codevector conversion 
In EFR and G.729, algebraic code-excited linear prediction 
(ACELP) technology is used for fixed codevector model. 
EFR uses a 35 bits ACELP codebook of 10 pulses with am-
plitudes +1 or -1 while G.729 uses an ACELP fixed-
codebook of 4 non-zero pulses with amplitudes +1 or -1. In 
this paper, we present an original conversion method be-
tween a 4 pulses ACELP fixed codebook (G.729) and a 10 
pulses ACELP one (EFR). 
The conversion is made at the signal level, but the B fixed 
codebook is limited to some combinations of privileged pulse 
positions derived from the pulse positions chosen by coder A. 
These privileged positions are selected in the close neighbor-
hood (right and left) of coder A pulses positions and are used 

to define a subset of coder B fixed codebook. Then, encoder 
B focused search is performed in a restricted sub-codebook 
instead of the full codebook as in conventional tandem. The 
neighborhood size is chosen according to quality/complexity 
trade-off. 

Track Pulse Sign Positions 

T0 i0 , i5 ± 1 0, 5, 10, 15, 20, 25, 30, 35 
T1 i1 , i6 ± 1 1, 6, 11, 16, 21, 26, 31, 36 

T2 i2 , i7 ± 1 2, 7, 12, 17, 22, 27, 32, 37 

T3 i3 , i8 ± 1 3, 8, 13, 18, 23, 28, 33, 38 

T4 i4 , i9 ± 1 4, 9, 14, 19, 24, 29, 34, 39 
Table 4: EFR 10 pulses ACELP codebook 

Track Pulse Sign Positions 

T0 i0 ± 1 0, 5, 10, 15, 20, 25, 30, 35 

T1 i1 ± 1 1, 6, 11, 16, 21, 26, 31, 36 

T2 i2 ± 1 2, 7, 12, 17, 22, 27, 32, 37 

T3 
T4 

i3 ± 1 3, 8, 13, 18, 23, 28, 33, 38 
4, 9, 14, 19, 24, 29, 34, 39 

Table 5: Positions of the G.729 pulses (8 kbit/s)  

By exploiting the common Interleaved Single-Pulse Permu-
tation structure of ACELP codebooks used in G.729 and 
EFR, the sub-codebook positions can be very quickly ex-
tracted from the positions chosen by coder A. Both EFR and 
G.729 ACELP codebooks use the same 40-samples length 
subframe structure into five interleaved tracks of length 8. 
Table 4 shows that EFR has two pulses per track. G.729 (ta-
ble 5) has one pulse per track in the first three tracks and a 
last one can be placed either on the fourth or fifth track.  
Each pulse position p is represented by the couple (t, r), 
where t is the pulse track and r its rank in its track t: 

trp += 5  with 0≤  t≤  4 and 0≤  r≤  7,  
In the proposed conversion method, from each pulse position 
of format A, right and left neighborhoods are extracted ac-
cording to the following method: 
Let d the neighborhood size, the neighbors )(i

kp of the ith 

pulse position ( )rtp j
i ,)( =  are:  

( ))()()()( , i
k

i
k

ii
k rtkpp =+=  with k in [-d, d], 
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5)(

)( i
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i
k tt ≡+= , and 



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5

)( kjrr i
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Note that 70 ≤≤ r . Note also that )()(
0

ii pp = . 

Then, the allowed positions for each track Tj (0≤  j≤  4) are 
restricted to be in the union of the N neighborhoods of the N 

coder A pulse positions: U U
N

i

d

dk

i
kpS

1

)(

= −= 





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=  

The track size reduction leads to a restricted subcodebook. 
For instance, if neighborhood size d is set to 1, in EFR to 
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G.729 transcoder, the maximum number of allowed positions 
in each track is 6 instead of 8. With neighborhood size d 
equal to 2, in G.729 to EFR way, 5 rank positions are allowed 
instead of 8. Table 6 shows for the two transcoding ways that 
in most cases, CELP Criteria (CCfoc) obtained by a restricted 
focused exploration is close to the standard one CCstd ob-
tained with the conventional focused codebook exploration. 
Informal experts listening pair comparison test indicates that 
this proposed procedure does not introduce any audible qual-
ity degradation while strongly reducing the number of tested 
combinations.  

 d CCfoc = CCstd CCfoc > 0.8 CCstd 

G.729 to EFR 2 12.4% 75.2% 

EFR to G.729 1 60.1% 87.4% 
Table 6: CELP criteria comparison  

3.4 Gains conversion 
In G.729 adaptive and fixed codebooks are jointly vector 
quantized on 7 bits whereas EFR adaptive and fixed code-
books gains are separately scalar quantized with 4 and 5 bits 
respectively. For these parameters, gains are recomputed on 
synthesized signals and then re-quantized like in conven-
tional tandem. 

4. PERFORMANCES EVALUATION  

4.1 Computational Complexity 
As a rough estimation of the proposed algorithm computa-
tional complexity, its processing time is compared with the 
tandem one for each parameter. 

parameter G.729 → EFR EFR → G.729 
LPC 50% 40% 
ACB 99% 99% 
FCB 38% 43% 
Gains 0% 0% 

Table 7: Complexity reduction in parameters computation 

4.2 Speech quality  
Perceptual evaluation of speech quality (PESQ) measure on 
12 French sentences (6 for male and 6 for female) has been 
used to compare the quality of the proposed transcoding al-
gorithm and of the conventional tandem. Table 8 shows that 
the proposed algorithm and qualified are very close. 

G.729 → EFR EFR → G.729  
Male Female Male Female 

Tandem 3.650 3.346 3.716 3.448 
Transcoded 3.619 3.225 3.632 3.256 

Table 8: Comparison of PESQ scores 

Pair comparison tests have been performed involving 16 sub-
jects, listening on handsets, on 16 samples (3 male, 3 female 
and 2 children voices). Tandem was found equivalent to the 
proposed algorithm in more than half of the cases. Yet tan-

dem was preferred to our algorithm more often than the op-
posite, especially in EFR to G729 case. Degradations pro-
duced by the two methods were perceived as different: tan-
dem introduces spectrum distortion (slightly masked by the 
handset) whereas transcoding introduces local hitches.  

 Tandem No preference Transcoding 
G.729 → EFR 28.5% 53.5% 18% 
EFR → G.729 37.5% 50.8% 11.7% 

Table 9: Pair comparison tests results 

4.3 Delay  
Here, only algorithmic and processing delays are considered. 
Processing delay is reduced because of the important reduc-
tion of computational complexity. Furthermore, in EFR to 
G.729 transcoder, LP analysis look-ahead is removed. The 
algorithmic delay is then reduced by 5 ms. 

5. CONCLUSION  

In this paper, a smart transcoding algorithm between ITU-T 
G.729 and 3GPP EFR speech coders was proposed. An origi-
nal approach for fixed-codevectors transcoding which favors 
neighborhoods of the first coder pulse positions has been 
proposed. This method has also been successfully applied to 
other transcoding between CELP coders using constrained 
multipulse fixed-codebooks such as ITU-T G.723.1 and 
3GPP NB-AMR. Performance evaluation shows that the pro-
posed method achieves a quality very close to the conven-
tional tandem one while reducing complexity and delay. 
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