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ABSTRACT
In this paper we summarize recent progress on local photo-
metric invariants. The photometric invariants can be used to
find correspondences in the presence of significant viewpoint
changes. We evaluate the performance of region detectors
and descriptors. We compare several methods for detecting
affine regions [4, 9, 11, 18, 17]. We evaluate the repeatability
of the detected regions, the accuracy of the detectors and the
invariance to geometric as well as photometric image trans-
formations. Furthermore, we compare several local descrip-
tors [3, 5, 8, 14, 19]. The local descriptors are evaluated in
terms of two properties: robustness and distinctiveness. The
evaluation is carried out for different image transformations
and scene types. We observe that the ranking of the detectors
and descriptors remains the same regardless the scene type
or image transformation.

1. INTRODUCTION

Local photometric invariants have shown to be very success-
ful in various applications including: wide baseline match-
ing for stereo pairs [1, 9, 18], reconstructing cameras for
sets of disparate views [14], image retrieval from large
databases [15], model based recognition [8, 13] and texture
classification [6]. They are robust to occlusion and clutter,
distinctive as well as invariant to image transformations. In
this paper we present an overview of local photometric in-
variants –affine-invariant regions and their description– and
evaluate their performance.

There is a number of methods proposed in the literature
for detecting local features in images. We require that a de-
tector finds the same regions regardless the transformation of
the image, that is the detection method is invariant to these
transformations. This property can be measured with a rela-
tive number of repeated (corresponding) regions in two im-
ages. Figure 1(a) shows an example of images with a view-
point change. Figure 1(b) displays affine regions detected
with the approach proposed in [11]. The regions are repre-
sented by ellipses and the corresponding ellipses capture the
same image part. We can use different techniques to describe
the regions (see section 2.2). We require a descriptor to be
robust and distinctive, that is to be insensitive to noise and to
differ from descriptors computed on other regions. The de-
scriptors can be also invariant to a class of transformations.
Given the invariant descriptors and a similarity measure we
can determine the corresponding regions by finding the most
similar pairs of descriptors (matches).

The comparison of region detectors and descriptors is
based on the number of corresponding regions and the num-
ber of correct matches between two images representing the

same scene. To compute these numbers we use a test data
with ground truth transformations. We use images of planar
scenes, which are related by a homography. Thus, region-
to-region correspondences can be easily found. The test data
includes structured and textured scenes as well as different
types of transformations: viewpoint changes, scale changes,
illumination changes, blur and jpeg compression.

In this paper we address the questions: which region type
and which descriptor leads to the best results, how the perfor-
mance depends on the transformation between images and on
the scene type. Previous evaluations [2, 11, 12, 16] of invari-
ant detectors/descriptors were done independently and used
different criteria and different test data, therefore the results
were not comparable. Here we use a unified framework for
the comparison.

2. INVARIANT LOCAL FEATURES

In this section we describe different affine-invariant local
photometric descriptors. The first step is the extraction of
affine-invariant regions, see section 2.1. Each of these re-
gions is then characterized by a descriptor, see section 2.2.

2.1 Affine-invariant region detectors

There are numerous approaches for feature detection and the
features extracted by these algorithms differ in localization,
scale and structure (corners, blobs, multi-junctions). In gen-
eral, the objective is to develop a detector invariant to a class
of geometric and photometric transformations introduced by
different viewing conditions. In the following we briefly de-
scribe the work related to the detection of affine-invariant
regions. All the regions are affine invariant up to rotation,
which can be recovered by other methods [8, 11].

Tuytelaars and Van Gool [17, 18] proposed two ap-
proaches for detecting affine invariant regions. The first
is geometry-based and combines Harris points with nearby
edges. An affine-invariant parallelogram region is deter-
mined by a Harris corner and two points on the nearby edges.
The second method is purely intensity-based and is initial-
ized with local intensity extrema. For each extremum the
algorithm finds significant changes in the intensity profiles
along rays going out from the extremum. An ellipse is fit-
ted to the region defined by the locations of these changes.
Matas et al. [9] proposed to use the water-shed algorithm to
find intensity regions. It searches for regions that have either
higher or lower intensity than the pixels on its outer bound-
ary. These features are called Maximaly Stable Extremal Re-
gions (MSER).

The second moment matrix is an efficient way to deter-
mine an affine-invariant region. It describes the first order
signal changes in a neighborhood of a point. Distinctive fea-
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(a) (b)
Figure 1: (a) Example of test images with viewpoint change of 60

�
. (b) Corresponding affine-invariant regions detected with

Harris-Affine detector.

tures are localized on strong signal changes. Lindeberg and
Garding [7] developed a method for finding blob-like affine
features. The authors first extract maxima of the normalized
Laplacian in scale-space and then iteratively modify the scale
and shape of the regions based on the second moment matrix.
Affine shape estimation was used for matching and recogni-
tion by Baumberg [1]. He extracts Harris interest points at
several scales and then adapts the shape of the point neigh-
borhood to the local image structure using the iterative pro-
cedure proposed by Lindeberg. The affine shape is estimated
for a fixed scale and fixed location. Note that there are many
points repeated at neighboring scale levels, which increases
the probability of false matches as well as the complexity.
Recently, Mikolajczyk and Schmid [11] proposed affine in-
variant Harris-Affine and Hessian-Affine detectors. They ex-
tended the scale invariant detectors [10] by the affine nor-
malization. The location and scale of points are given by the
scale-invariant Harris and Hessian detector.

A different approach for detection of scale and affine in-
variant features was proposed in [4]. They search for Salient
regions which locally maximize the entropy of pixel intensity
distribution.

2.2 Region descriptors

Many different techniques for describing image regions have
been recently developed. The simplest descriptor is a vector
of image pixels. However, it is not invariant to different geo-
metric and photometric transformations. Moreover, the high
dimensionality of such a description increases the computa-
tional complexity. Therefore, this technique is mainly used
for finding point-to-point correspondences between two im-
ages. To reduce the dimensionality the distribution of the
pixel intensities can be represented by a histogram. How-
ever, the spatial relations between pixels are lost and the dis-
tinctiveness of such descriptor is low. Another possibility is
to use a distribution of gradient orientations weighted by the
gradient values within a region. Lowe [8] developed a 3D
histogram, called SIFT, where the dimensions are: gradient
angle quantized to 8 principal orientations and 4x4 location
grid on the region. Generalized moment invariants [19] have
been introduced to describe the multi-spectral nature of the
data. The moments characterize the shape and the intensity
distribution in a region.

A family of descriptors is based on Gaussian deriva-
tives and can be computed to represent a point neighbor-
hood [3, 5]. The derivatives can be computed up to a
given order and normalized to be invariant to pixel intensity
changes. Differential invariants and steerable filters were
successfully used for image retrieval [10, 15]. Complex fil-
ters [1, 14] were designed to obtain rotation invariance and

are similar to the Gaussian derivatives. In the context of tex-
ture classification Gabor filters and wavelets are frequently
used to describe the frequency content of an image.

3. EXPERIMENTAL SETUP

In this section we describe the evaluation framework. Sec-
tions 3.1 and 3.2 present the evaluation criteria for detectors
and descriptors, respectively. In section 3.3 we discuss our
test data.

3.1 Detector evaluation criteria

The important properties characterizing a feature detector
are: the repeatability as well as the accuracy of localiza-
tion and region estimation under different geometric and
photometric transformations. We follow the approach pro-
posed in [11] to evaluate the detectors. The repeatability
score for a given pair of images is computed as the ra-
tio between the number of region-to-region correspondences
and the smaller number of regions detected in one of the
images. We take into account only the points located in
the part of the scene present in both images. Given the
ground truth transformation we can find the corresponding
regions. Moreover, we can project the regions from one im-
age on the other and verify how closely the regions overlap.
The overlap error between corresponding regions is the ratio�
1 �������
	���
�	������������������������ of the elliptic regions and it is

analytically computed using the ground truth transformation.
The repeatability score depends on the arbitrary set overlap
error. In this evaluation we compute the repeatability for dif-
ferent overlap error.

We evaluate six different detectors described in sec-
tion 2.1: Harris-Affine, Hessian-Affine [11], MSER [9], In-
tensity based regions [18], Geometry based regions [17] and
Salient regions [4].

3.2 Descriptor evaluation criteria

The regions should be repeatable, but it also very important
in the matching process that the region descriptors are dis-
tinctive. Distinctiveness of the descriptor is measured with
the Receiver Operating Characteristics (ROC) of detection
rate versus false positive rate. The detection rate is the num-
ber of correct matches with respect to the number of corre-
sponding regions. Two points are matched if the distance be-
tween their descriptors is below an arbitrary threshold. This
threshold is varied to obtain the ROC curves. We use the
ground truth homography to verify if the match is correct.
The false positive rate is the actual number of false matches
in a database of descriptors with respect to the number of all
possible false matches. The images in the database are dif-
ferent from the query images, therefore all the matches in the
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database are incorrect.
We compare six methods for computing region descrip-

tors introduced in section 2.2: SIFT descriptors [8], steerable
filters [3], differential invariants [5], complex filters [14],
moment invariants [19], and cross-correlation.

3.3 Test data

We evaluate the descriptors on real images 1 with differ-
ent geometric and photometric transformations. Different
changes in imaging conditions are evaluated: gradual view-
point changes, scale changes, image blur, JPEG compression
and illumination. We use planar scenes such that the homog-
raphy can be used to determine the correctness of a match.
The images contain different structured (e.g. graffiti, build-
ings), or textured (e.g. trees, walls) scenes. To evaluate the
false positive rate, that reflects the distinctiveness of the de-
scriptors, we use a database of 1000 images extracted from a
video.

4. COMPARISON RESULTS

In the following we present the evaluation results. In sec-
tion 4.1 we discuss the results for detectors and section 4.2
for the descriptors.

4.1 Detectors

Figure 2 presents the results for the repeatability score for
Graffiti images (cf. Figure 1). Figure 2(a) shows how the
repeatability depends on the perspective transformation that
the image undergoes. For a given overlap error of 50% (de-
tection accuracy) we increase the transformation between the
reference image and the query image and measure the rela-
tive number of corresponding regions. We can observe that
the performance decreases for large viewpoint angles. Fig-
ure 2(b) displays the actual number of corresponding features
with the overlap error of 50%.

We require a detector to have a high repeatability score
and a large number of correspondences. For most trans-
formations and scene types the MSER, Harris-Affine and
Hessian-Affine regions obtain the best repeatability score.
Harris and Hessian detector provide several times more cor-
responding regions than the other detectors but this number
decreases for larger transformations between images.

Figure 2(c) shows the repeatability score computed for a
pair of images with a viewpoint change of 50 degrees. We
compute the repeatability score while varying the overlap
error. The threshold rejects the corresponding regions de-
tected with larger overlap error (lower accuracy). A high
score for a small overlap error indicates a high accuracy of
a detector. In all test MSER and Intensity based regions ob-
tain higher repeatability score than other detectors for a small
overlap error. The number of corresponding regions detected
with Harris-Affine and Hessian-Affine significantly increases
when larger overlap error is allowed.

4.2 Descriptors

In the following we discuss the results for descriptors eval-
uation. Figure 3(a) shows the detection rate with respect to
false positive rate.

Figure 3(a) shows the results for a viewpoint change of
the Graffiti sequence. Examples for other image transfor-
mations can be found in [12]. In all tests, except for light

1http://www.inrialpes.fr/movi/Mikolajczyk/Database

changes, SIFT descriptors obtain better results than the other
descriptors. This shows the robustness and the distinctive
character of the SIFT descriptors computed on image patches
normalized to affine photometric and geometric transforma-
tions. It was designed to tolerate small shift error and affine
deformations while keeping high distinctiveness. The sec-
ond best descriptors are the steerable filters. Cross correla-
tion gives unstable results. Its performance depends on the
accuracy of region detection, which decreases for significant
geometric transformations. Differential invariants give sig-
nificantly worse results than the steerable filters, which is
surprising as they are based on the same basic components
(Gaussian derivatives). The multiplication of derivatives nec-
essary to obtain the rotation invariance increases the instabil-
ity of the descriptors.

The distinctiveness of a descriptor also depends on the
type of detected regions. Figure 3(b) shows the matching
score obtained with SIFT descriptors computed on differ-
ent region types. It displays the relative number of correct
matches for increasing viewpoint change between images.
The results are consistent with those of the repeatability test.
It means that the distinctiveness is similar for different region
types. We can observe that the best results are obtained for
MSER regions. This is because of the high accuracy of the
MSER detector. Harris-Affine and Hessian-Affine come sec-
ond. Note that the Harris based features contain strong signal
changes in the center of the regions. The other detectors find
blob like structures where the essential signal changes are on
the region boundaries. Therefore, the region size have to be
larger to capture the signal variations.

5. DISCUSSION AND CONCLUSIONS

In this paper we have presented an experimental evaluation
of local affine invariant features for sequences with real geo-
metric and photometric transformations. In all tests the best
repeatability score was obtained by MSER as well as by the
regions provided by Harris-Affine and Hessian-Affine detec-
tors. MSER detector is also more accurate than other detec-
tors. Harris affine detector provides several times more re-
gions than other methods. We observe that the detectors pro-
vide complementary regions and their performance as well
as the number of detected regions depends on the scene type.
Harris and Hessian based approaches give stable results re-
gardless the scene type, while the performance of other de-
tectors is low for scenes with irregular texture.

In the descriptor evaluation, SIFT obtains the best results.
Steerable filters can be considered as an alternative given the
low dimensionality of this descriptor. Cross-correlation are
not robust to small geometric deformations.

In the future work we plan to include in this comparison
other affine detectors and local descriptors. It would be also
of interest to evaluate the impact of different sources of error
which can occur in the estimation of region parameters.
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score for SIFT descriptor computed on different region types with respect to viewpoint changes.
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