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ABSTRACT

This paper presents the performance evaluation of a water-
marking algorithm, an image and video processing technique
used for Digital Right Management. Software developments
are largely used in image copyright applications but there is
a lack of real time applications for video. A previous work in
image watermarking was already done and proposed a new
algorithm with very interesting security properties. Never-
theless, the software implementation of this watermarking
scheme showed some restrictions concerning real time ap-
plications. Hence, we propose to extend the previous paper
with a lighter version of the algorithm and a complete hard-
ware implementation allowing us to deal with high through-
put image/video applications, such as digital cinema.

1. INTRODUCTION

The Digital Right Management issue constitutes a bottleneck
for a large use of digital contents. The aim of this work is to
propose a solution to protect video displaying for digital cin-
ema. Some works have been done in image and audio secu-
rity and a largely used method is the watermarking. Accord-
ing to [1], watermarking techniques depend on the working
domain, type of document, human perception and applica-
tions.

The processing involved in video security for cinema is
highly constrained. In such an application, the manipulated
pictures have a size of 2048 x 1024 pixels or more. Hence,
the algorithm processes a high dataflow of information. A
high throughput is one of the main priorities. A real time
process is also expected to personalize each movie in each
projection room and ensure a tracking of the media after pro-
jection. Therefore, the watermark needs to be different in
each projection room: it is called fingerprinting or labelling.
This method is used to distinguish an object from other sim-
ilar objects and helps tracing the stolen video sequence and
the corrupted projection room.

The visual quality of pictures projected on the screen of
a projection room should not be affected by the deteriora-
tion brought by the mark pattern addition. As described in
[2], the requirements on watermarking scheme are invisibil-
ity, security, robustness, complexity, constant bit-rate, inter-
operability and retrieval.

This work has been funded by the Wallon region
(Belgium)  through the research project TACTILS  http
//www.dice.ucl.ac.be/crypto/TACTILS /T_home.html

A strong but slow algorithm detailed in [3] offers some
interesting properties such as resistance against compression
and Digital/Numeric conversion. This algorithm is based on
secret key management where the embedding and extraction
keys are the same and must be kept secret!. It works in un-
compressed domain, so it does not depend on the compressed
domain of the image or video sequence.

Hence, a fingerprinting platform should be based on a
quick mark embedding algorithm and a robust and invisible
spread signal added to the original multimedia stream. For
very high multimedia bitstreams, the fingerprinting process
need to be hardware implemented to meet the application
constraints. We investigate a solution based on a reconfig-
urable device (a Virtex-II FPGA? from Xilinx). In addition,
to increase the speed efficiency, we modify the original algo-
rithm [3] in order to simplify the embedding process without
deteriorating the robustness. FPGA fingerprinting designs
propose a judicious tradeoff between speed, visual quality
and robustness against different kind of attacks.

The description of the fingerprinting algorithm is de-
scribed in the second section. To ensure a real time appli-
cation, the FPGA implementation is detailed in the third sec-
tion. Finally, the fourth section concludes this paper.

2. WATERMARKING ALGORITHM
2.1 Previous work

The watermarking presented in [3] is based on a secret key
management. It allows embedding a 64-bit mark into one
image. It is also a blind architecture meaning that we do not
need original images to extract the watermark. This algo-
rithm ensures a strong resistance against some attacks such
as print and scan, compression, noise, cropping, translation
and rotation. Tracking and copyright protection are also very
interesting applications for this fingerprinting scheme. It was
used successfully in some European projects [5] and [4].
The algorithm is divided in three parts: pattern genera-
tion which is the pseudo mark embedded, the psychovisual
mask which is the mark weighting for the invisibility, and
the synchronized block which is a template added to pattern
generation to be resistant against geometrical deformation.
Even if the algorithm is very efficient for still images,
video tests applied in projection room show some deficien-

! As opposed to an asymmetric public watermarking system.
’Field Programmable Gate Array.
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cies. The watermark embedded in the projected pictures is
not always detected. The problem is due to the inefficiency
of the synchronization block. In addition, this block is too
slow and too complex for real-time digital cinema applica-
tions.

2.2 Description of the light algorithm

To avoid these previously detailed problems concerning dig-
ital cinema, we propose an evolution to a lighter algorithm as
detailed in Figure 1. We replace the synchronization block
by an off-line process, called RASH [7]. One of the RASH
functionalities allows an efficient recovering of geometrical
manipulations. Therefore, we get a fast and robust finger-
printing scheme.

—{ Pattern Generation

)

Message

Secret Keys

B source Pattern 2D

Psychovisual mask

,

Watermark

Image watermarked

Figure 1: Watermarking block scheme.

The different blocks of our light watermark are shown
below. More detailed information can be found in [3].

e Psychovisual mask: The psycho visual mask is based on
image activity (local mean) that compares medium pixel
intensity inside its environment (its neighbors), and the
Weber-Fechner law that highlights the visibility of the
pixel intensity.

e Convolutional code: We chose a convolutional code to
encode the original message. Therefore, we extend the
64-bit original message to a 128-bit code. Soft Viterbi is
used to recover the original message. Convolutional code
offers real improvement for the watermarking extraction
due to the redundancy of the 128-bit code. Indeed, the
original message could be correctly revealed even if some
errors appear in the extracted 128-bit code.

e Pseudo-random generator: An efficient watermark is
a robust mark based on redundancy, an accurate recov-
ery method and an undetectable mark for a user without
right. A MLS? pseudo-random sequence provides most

3Maximum Length Shift register or m-sequence.

of the previous requirements. The length of this cyclic se-
quence is n = 2" — 1, where m* is the number of stages.
This code generates a Gaussian noise appearance and
provides interesting detection properties. For secure ex-
traction, we define a 40-bit key Keyo. This key is used as
the secret seed for the generation of our MLS code. The
combination of the convolutional code and the MLS code
allows generating an 1-D cyclic sequence called WORD.
Typically, the length of WORD is 2.

e 2-D Pattern: We create a 2-D cyclic pattern, expanding
our WORD into a matrix. The processed method is a
linear computation between the image point coordinates
and two 8-bit secret keys Key; and Key;:

Pattern(i, j) = WORDI|(i x Key, + j * Key>)
mod length(WORD)) (1)

where (i,j) represents the image pixel coordinates.

Pattern(i, j) represents the way we are going to modify

the (i, j) pixel intensity: if it is equal to 1 (0), the pixel

intensity will be increased (decreased).

A translation or cropping operation on the captured im-
age is equivalent to the same transformation on the 2-D pat-
tern. It simply corresponds to a cyclic permutation of the
WORD, that fully permits a robust extraction of the original
mark:

Pattern(i+io, j+ jo) = WORD|((i +io) * Key; +
(j+ Jjo)*Key,) mod length(WORD)]

Pattern(i+io, j+ jo) = WORD|((i x Key + j x Key2)+
(io * Key| + jo* Key,)) mod length(WORD))

This watermarking algorithm is almost fully image pro-
cessing resistant and cropping/translation resistant.

2.3 Watermarking detection performance

To evaluate the robustness and performance of our water-
marking method, we experiment on 40 real-world images
taken from the USC-SIPI database [6].

In [1], an embedding process is defined as:
v; =v;+ ob;ip;

Where v} is the fingerprinted signal, v; is the original signal,
b; the embedded message, p; pseudo noise sequence, O is
the force of the mark. In our case ¢.b;.p; are weighted by
the psychovisual mask.

For each of the 40 images of the data base, we embed a
message with a range of six a (0.02,0.04,0.08,0.1,0.15,0.2).
To evaluate the image processing degradation due to finger-
printing insertion, we calculate the PSNR mean for each
modified images according to the force «. Figure 2 shows
the resulting PSNRs. An empirical value of 32db is a good
PSNR threshold to achieve a not too visible added template.

For each fingerprinted image, we consider 4 image pro-
cessing attacks, generating 40 x 6 x4 = 960 images, named
processed images. The attacks are filtering (3x3 Gaussian
filtering with standard deviation of 0.5), compression (JPEG

440 in our case.
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Figure 2: PSNR mean of 40 fingerprinted images regarding
the force of the fingerprint

compression with 80% and 60% quality factor), and noise
(salt and pepper).

The robustness results are given by Tables 1, 2, 3, 4. The
term Extracted represents the number of processed images
where the mark is correctly detected and extracted, Only de-
tected represents the number of processed images where the
the mark is correctly detected but too many bits are lost to
compute a correct extraction process and No detected repre-
sents the number of processed images where the mark is not
detected and no extracted.

Force 0.02 | 0.04 | 008 | 0.1 | 0.15 | 0.2
Extracted 29 39 40 40 40 40
Only detected 4 1 0 0 0 0
No detected 7 0 0 0 0 0

Table 1: Gaussian attack.

Force 0.02 | 0.04 | 0.08 | 0.1 | 0.15 | 0.2
Extracted 27 40 40 40 40 40
Only detected 4 0 0 0 0 0
No detected 9 0 0 0 0 0

Table 2: Noise attack.

Force 0.02 | 0.04 | 0.08 | 0.1 | 0.15 | 0.2
Extracted 26 37 40 40 40 40
Only detected 3 3 0 0 0 0

No detected 11 0 0 0 0 0

Table 3: Jpeg attack, quality=60.

Force 0.02 | 0.04 | 0.08 | 0.1 | 0.15
Extracted 30 39 40 40 40
Only detected 3 1 0 0 0
No detected 7 0 0 0 0

B9
SIS SR

Table 4: Jpeg attack, quality=80.

Attacks and PSNR figures provide a good empirical value
of the force, closed to 0.06, to obtain a good tradeoff robust-
ness/visibility of the fingerprint.

3. HARDWARE ASPECT
3.1 Detailed block implementation

As previously mentioned, the fingerprinting insertion process
needs to be hardware implemented to deal with the high bit

rate of digital cinema. Figure 3 illustrates the global FPGA
architecture of our fingerprinting scheme. We propose a
complete unrolled and pipelined design to ensure the data
processing throughput of digital cinema. We adapt the de-
sign to support 2048 x 1024 frames with a dataflow of 24
images per second.

The first watermarking step is to compute the convolu-
tional code from the 64-bit original mark and the MLS se-
quence until the WORD sequence is completely generated.
WORD(n) means the n'" bit of the sequence. The proposed
design allows us to change Keyy and the mark to embed for
each new frame. About 100,000 clock cycles (~ 1 ms) are
required to generate a new WORD from a new key or a new
original message. Therefore, it is not a judicious choice to
change these inputs for every new frame.

Original mark to Key,
embed

T g

’ Convolutional code + ‘

1-D MLS sequence
Pattern(i.j)
Shift
1 Register

WORD() 1 1:
Key, !

2-D Pattern

N

Activity Saturation
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Out_U, Out_V
/

Shift
Register

2x8

Figure 3: The global fingerprinting architecture.

Once the WORD is generated, we start to compute the 2-
D pattern assuming that the image pixels are received in a one
by one serial way (cycle by cycle) in the YUV domain, line
by line. We first receive (0,0), then (1,0), (2,0), ... , (0,1),
(1,1) and so on. Every cycle a new pixel (i, j) is processed
and a new Pattern(i, j) is computed. Secret keys Key; and
Key, can be modified for every new frame without any dead
cycles, which it is not the case for Keyy. Nevertheless, chang-
ing only Key; and Key, regularly is not secured enough. It is
better to change sometimes all the secret keys between two
frames. Figure 4 shows the architecture concerning the cal-
culation of Equation 1. The 32.768 bits of the WORD se-
quence are stored inside two separate RAM blocks”.

Key, %—xb
] 19
] [
- Pattern
@)
T . |
0
Key, \—p WORD(n) in
8 Write RAM port |

Figure 4: The 2-D pattern block.

3Virtex-Il FPGAs have only internal 18-Kbit RAM blocks.
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In parallel with the 2-D pattern calculation for the (i, j)
pixel, we compute the first part of the psychovisual mask
based on the local activity of the Y component. The activity
of (i,j) pixel is the difference between the intensity of the
(i, j) pixel and the mean intensity of the close pixels®.

Figure 5 illustrates the activity calculation of one pixel.
In addition, the block computes the absolute value of the ac-
tivity value and returns Ouz_Y .

Shift o|  Shift o

Register

YA\\_>

Register 8

z
Y
a,
|74
a
e
=

Figure 5: The Activity block.

Figure 6 completes the psychovisual mask applying the
Weber-Fechner law (stored in a ROM). In addition, the sat-
uration block inserts the mark thanks to the Patrern(i, j) bit
and ensures that the modified intensity is between 0 and 255.

‘Weber -Fechner
law

Out_Y

Max

Activity

Max

Figure 6: The Saturation block.

3.2 Complete implementation results

The synthesis of our complete fingerprinting design was done
using Synplify Pro 7.2 from Synplicity. The placing and

%In total, there are 8 pixels involved for the mean calculation, the direct
8 neighbors of the (i, j) pixel.

routing were done using Xilinx ISE 6.1.i. The final results
are given in Table 5 for a Xilinx Virtex-II FPGA (XC2V500-
6). We detail the resources used according to two frame sizes
(2048 x 1024 and 1024 x 768).

Frame size 1024 x 768 | 2048 x 1024
LUTs used 1670 2727
Registers used 759 761
Slices used 1065 1617
RAM blocks used 4 4
Multipliers used 4 4
Max. Output every (cycles) 1 1
Frequency (MHz) 143.9 143.9
Max. Throughput (Mbps) 3454 3454
Nbr Images/seconde 182.98 68.62

Table 5: Final results of our complete fingerprinting scheme.

Our design is able to fingerprint all 2048 x 1024 video
frames even if we need to project at a dataflow of 48 images
per seconde. We fully meet the digital cinema requirements.

4. CONCLUSION

This paper presents a light fingerprinting algorithm perfectly
adapted to digital cinema and tracking of media after its pro-
jection/diffusion. We evaluate the performance of the com-
plete watermarking scheme and we tune the algorithm pa-
rameters to reach a good tradeoff robustness/visibility. To
avoid the slowness of the software implementations, we pro-
pose a complete FPGA implementation of the fingerprint-
ing insertion. The resulting design is able to deal with
2048 x 1024 video frames at a throughput of about 68 im-
ages/sec. This solution completely meet the digital cinema
requirements for a very reasonable hardware cost.
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