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ABSTRACT

This contribution investigates a space-time multiuser receiver
with weighted non-linear parallel interference cancellation
for the uplink of UMTS FDD mode. More specifically, we
tailor a receiver concept originally proposed by Divsalar et
al. to the uplink of UMTS FDD and extend the concept
to space-time processing. This receiver consists of several
concatenated identical processing stages. The concept turns-
out to be well-suited for the uplink which employs long-
code CDMA. Our simulations show that this receiver offers
a graceful trade-off between computational complexity (ex-
pressed in the number of stages) and bit error rate in UMTS.
With pilot-based channel estimation, four receive antenna el-
ements, and two receiver stages we obtain an uncoded bit
error rate of 4% at an Eb/N0 of 4dB.

1. INTRODUCTION

Multistage receivers with parallel interference cancellation
(PIC) offer a graceful degradation in bit error rate when
traded against signal processing complexity. Moreover, they
are well-suited for long-code CDMA systems like the uplink
of UMTS FDD [4,5]. Introducing space-time signal process-
ing allows further enhancements of the multistage concept.

An approximate analysis of receiver structures with PIC
based on signal to interference and noise ratio computa-
tion (but ignoring correlation effects between stages) can be
found in [1, 6]. An analysis which takes correlation effects
into account can be found in [2,8]. However, these analytical
results turn-out to be rather in-accurate, especially for higher
numbers of stages, due to the required idealizations.

To the knowledge of the authors, an accurate theoretical
analysis of non-linear PIC receiver structures enjoying lower
bit error rates than linear PIC structures does not yet exist in
the literature. We describe simulations for finding the best
set of PIC weighting coefficients for a given number of users
K and a selected Eb/N0. Finally, we discuss effects from
imperfect channel estimation based on pilot symbols on the
Physical Control CHannel (DPCCH) on the bit error rate per-
formance.

2. SYSTEM MODEL

We consider the uplink of a UMTS FDD cell with K users
[4, 5] illustrated in Fig.2. Dedicated channels are segmented
in time into frames with a duration of 10 ms. Each frame
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consists of 15 slots with 2560 chips each and has user data
modulated on the inphase path and user control information
mapped onto the quadrature path. The data ak of the k-th
user is spread with the channelization code cDCH,k that has
a sequence length NDCH,k ∈ {8,16,32,64, 128,256} chips
with 1 data channel, or NDCH,k = 4 with up to 6 parallel
data channels. The control channel contains the pilot sym-
bols, the transport format combination indicator (TFCI), the
transmit power control command (TPC), and feedback infor-
mation (FBI) in dCCH,k. The corresponding channelization
code cCCH,k has spreading factor NCCH = 256 in any case.
Let n be the chip sampling time then

xk[n] = ak

[
dn/NDCH,ke

]
cDCH,k

[
nmodNDCH,k

]

+ jbk

[dn/NCCHe
]

cCCH,k

[
nmodNCCH

]

with d·e being the integer ceil operator. To distinguish among
users the information is chip-wise multiplied (scrambled) by
a finite segment taken from a Gold-sequence sk of length
38400 chips (1 frame)

x′k[n] = xk[n]sk[nmod38400].

The transmitted signal of each user is subject to fre-
quency selective fading on a multiple-input multiple-output
(MIMO) channel. We assume a block-fading characteristic
for the duration of a slot period. In the system under con-
sideration we have NT = 1 transmit antenna (for each mobile
user individually) and NR receive antennas at the Node B.
Assuming that the k-th user has Lk channel taps, the channel
impulse response (CIR) to the r-th receive antenna-element
is given by

hr,k[n] =
Lk

∑̀
=1

hr,k[`]δ [n− τ`,k].

The tap delays δ [n− τl,k] for user k are assumed to be the
same on all antennas elements. The individual channel taps
hr,k[`] are i.i.d. with zero mean and variance σ2

h,k = 1/Lk. We
follow [3] and normalize the channel taps of user k over all
antennas to unit power,

E

{
NR

∑
r=1

Lk

∑̀
=1

∣∣hr,k[`]
∣∣2
}

= 1. (1)

The contributions of individual users (k = 1, . . . ,K) add up
on the multiuser MIMO channel:

yr[n] =
K

∑
k=1

Akx′k[n−νk]∗hr,k[n]+ v[n] , (2)
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Figure 1: System setup with space-time receiver.

where ∗ stands for the convolution. v[n] denotes the additive
complex white Gaussian noise with variance σ2

v = 1. The
receive power of the k-th user is denoted by A2

k and νk desig-
nates the propagation delay of the earliest arrival for user k.
This formulation describes the asynchronous uplink.

3. MULTISTAGE RECEIVER

Let yyyk,r[m] be the received signal vector at the r-th antenna
which contains energy from the m-th symbol of user k. We
can then apply a single-user matched filter fff k,r[m] = hhhk,r ∗
(cDCH,k[m]� sk[m]) to the receive vector to obtain the m-th
data symbol estimate of the k-th user:

ã(1)
k

[m] =
1

NR

NR

∑
r=1

fff H
k,r[m]yyyk,r[m]. (3)

Note that� designates the element-wise multiplication of the
data channelization sequence with the corresponding part of
the scrambling sequence. The signalling data on the quadra-
ture component is processed accordingly.

Without loss of generality, we assume below that user 1
is the user of interest and the remaining users 2, . . . ,K are
the interferers. For suppressing multiple access interference
(MAI), the estimated symbols of the interferers are respread
and used for estimating the MAI for user 1, cf. [9]. The
resulting MAI estimate at sample m is subtracted from the
observation vector yyy1,r[m]. Here, we investigate a weighted
parallel interference canceller (PIC) specifically for UMTS
similar to [1] which is shown in Fig. 3. The combination of a
bank of Rake receivers and the weighted PIC is called a stage
for the purposes of this paper. The symbol estimates from the
first stage (i = 1) are defined in Eq.(3). In the i-th stage (for
i = 2,3, . . .), the estimated MAI for user 1 is weighted by
p and the symbol estimate ã(i−1)

1
[m] from the previous stage

i−1 is weighted by (1− p),

ã(i)
1

[m] = (1− p) ã(i−1)
1

[m] + (4)

p fff H
1,r[m]

(
yyy1,r[m]−

K

∑̀
=2

â(i−1)
`

[m] fff `,r[m]

)
.

where the MAI contribution from the `-th interferer is esti-
mated by a suitably chosen mapping g,

â(i−1)
`

[m] = g
(

ã(i−1)
`

[m]
)
.
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Figure 3: BER evolution vs. weight factor p in case of the
linear partial IC device. K = 10, NDCH = 32, AWGN chan-
nel.

The mapping functions considered in this contribution are

the trivial mapping g(ã)
4
= ã, the MMSE estimate for BPSK

modulation on AWGN channels [7], i.e. g(ã)
4
= tanh(ã/c),

and the ML estimate g(ã)
4
= sign(ã). The trivial mapping

and the MMSE estimator are soft-symbol estimators while
the ML estimate carries out hard decisions. The c-parameter
of the MMSE estimator adjusts the reliability of the symbol.
If the MAI variance σ2

z were known [7] then the MMSE esti-
mator would have used c = σ2

z /a. Instead of the true σ 2
z , we

use the estimate

σ̂ (i)
z =

∣∣∣∣∣
1
M

M

∑
i=1

(ã(i))2−a2

∣∣∣∣∣

1
2

,

in the i-th stage. Divsalar et al. [1] report that the best perfor-
mance is achieved with a tanh(·) mapping.

4. CHOICE OF THE WEIGHTS

An accurate theoretical analysis of the multistage receiver
with non-linear mapping g is not known to the authors.
Therefore, we investigate the influence of the weighting p
in Eq.(4) through simulations and search for optimal p nu-
merically.

The strategy is to find the factor p for which the BER
becomes minimum for a given Eb/N0 and a system load α .
This is not yet known in the literature for the tanh-mapper we
will derive these and compare them with the corresponding
results of the linear mapper.

For the current analysis we have K = 10 users and all
have NDCH = 32. We assume a AWGN channel with an
Eb/N0 of 8 dB. The dependency of the bit error rate on the
weighting is depicted in Fig. 3 for the linear canceller. The
non-linear canceller weights are depicted in Fig.4 for the sign
mapper and in Fig.5 for the tanh mapper.
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Figure 2: i-th receiver stage for user 1 formulated in Eq.(4). The users 2, . . . ,K are interferers.
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Figure 4: BER evolution vs. weight factor p in case of the
sign partial IC device. K = 10, NDCH = 32, AWGN channel.
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Figure 5: BER evolution vs. weight factor p in case of the
tanh partial IC device. K = 10, NDCH = 32, AWGN channel.

5. SIMULATION RESULTS

In this section we discuss the performance of the space-time
multistage non-linear weighted PIC receiver and compare it
to the corresponding linear version. We consider a system
with K = 10 users with spreading factor NDCH = 32 on the
data channel. The slot format was chosen to have P = 8 pilot
symbols on the dedicated control channel of each user. The
k-th user is assigned the long uplink scrambling sequence
#k, cf. [5]. The propagation channels have a delay spread
of max{τk} = 15 chips and there are Lk = 4 temporal i.i.d.
Rayleigh taps generated for each link under the restriction
formulated in Eq.(1). The path searcher in the Node B
considers N f = 4 Rake fingers. We observed in simulations
that the sign mapping leads to the best performance and we
will focus on this case with the weights as ppp = [0.30.50.7],
where the first entry denotes the weight for the first stage
and so forth.

First we consider the perfect channel estimation case.
This scenario is depicted in Fig. 6. We see that with
merely three stages the receiver can gain considerably in
bit error rate compared to the one-shot RAKE case which
corresponds to the first stage only. For comparison we have
also plotted the single user bound. In the case of NR = 4 we
can reach the single user bound.

The impact of imperfect channel estimation is shown in
Fig. 7. At a typical Eb/N0 of 4 dB the gap to the single user
bound is 1.5 dB in the case of single antenna reception and
reduces to 0.5 dB for a four antenna space-time processor.
In the high SNR regime the gap becomes larger: at 8 dB we
loose a factor 4 in bit error rate for the single antenna system
whereas it reduces to a factor of 2 in the four element case.

6. CONCLUSIONS

This contribution investigates the benefits from partial in-
terference cancelling for a space-time UMTS FDD receiver.
The symbol decisions are taken with either linear or non-
linear devices, namely a hard-limiter and a hyperbolic tan-
gent. We have carried out numerical simulations for finding
suitable weights. We compare the resulting receiver variants
in terms of their bit error rates. It turns out that the hard-
limiting decision leads to best performance. For this vari-
ant we discuss results in a multipath environment and one or
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Figure 6: Partial IC with sign device and perfect CSI. K = 10,
NDCH = 32, max{τk} = 8 chips, Lk = 4.
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Figure 7: Partial IC with sign device and channel estimation.
K = 10, NDCH = 32, max{τk} = 8 chips, Lk = 4.

four receive antennas. We investigate the loss from imper-
fect channel estimation based on the correlation with respect
to perfect channel state information at the receiver. It turns
out that the benefit from multistage processing improves with
Eb/N0 is. A factor of 6 in BER reduction is observed at 10 dB
for the single antenna receiver. With four receive antennas,
the factor increases to 8.
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